LINEARIZING THE EXPANDING PART OF NONINVERTIBLE MAPPINGS

被引:9
作者
AULBACH, B
GARAY, BM
机构
[1] Dept of Mathematics, University of Augsburg, Augsburg
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1993年 / 44卷 / 03期
关键词
D O I
10.1007/BF00953663
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of this paper is on partial linearization by means of a topological transformation of a mapping which is not supposed to be invertible. Our approach also provides a new proof (based on elementary degree theory) of the Hartman-Grobman Lemma as well as sharp results on the smoothness of the pseudo-stable foliation. The results are valid in arbitrary Banach spaces.
引用
收藏
页码:469 / 494
页数:26
相关论文
共 43 条
[1]  
Abraham R., 1988, MANIFOLDS TENSOR ANA
[2]  
Amann H., 1983, GEWOHNLICHE DIFFEREN
[3]  
ARNOLD V, 1982, GEOMETRICAL METHODS
[4]  
AULBACH B, 1988, 185 U AUGSB PREPR
[5]  
AULBACH B, 1991, 226 U AUGSB PREPR
[6]  
Belitskii G. R., 1978, CLIN EXP IMMUNOL, V33, P95
[7]   CK CENTER UNSTABLE MANIFOLDS [J].
CHOW, SN ;
LU, KN .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :303-320
[8]   SMOOTH INVARIANT FOLIATIONS IN INFINITE DIMENSIONAL SPACES [J].
CHOW, SN ;
LIN, XB ;
LU, KN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) :266-291
[9]   CROSS-SECTIONS OF SOLUTION FUNNELS IN BANACH-SPACES [J].
GARAY, BM .
STUDIA MATHEMATICA, 1990, 97 (01) :13-26
[10]  
Hale J., 1988, ASYMPTOTIC BEHAVIOUR