Inference for unstable long-memory processes with applications to fractional unit root autoregressions

被引:48
作者
Chan, NH [1 ]
Terrin, N [1 ]
机构
[1] CARNEGIE MELLON UNIV,DEPT STAT,PITTSBURGH,PA 15213
关键词
fractional Brownian motion; least squares; long-range dependence; stochastic integral; unstable;
D O I
10.1214/aos/1176324318
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An autoregressive time series is said to be unstable if all of its characteristic roots lie on or outside the unit circle, with at least one on the unit circle. This paper aims at developing asymptotic inferential schemes for an unstable autoregressive model generated by long-memory innovations. This setting allows both nonstationarity and long-memory behavior in the modeling of low-frequency phenomena. In developing these procedures, a novel weak convergence result for a sequence of long-memory random variables to a stochastic integral of fractional Brownian motions is established. Results of this paper can be used to test for unit roots in a fractional AR model.
引用
收藏
页码:1662 / 1683
页数:22
相关论文
共 14 条
[1]  
Banerjee A, 1993, CO INTEGRATION ERROR
[2]  
Beran J., 1992, STAT SCI, V7, P404, DOI DOI 10.1214/SS/1177011122
[3]   ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY AR(1) PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1987, 15 (03) :1050-1063
[4]   LIMITING DISTRIBUTIONS OF LEAST-SQUARES ESTIMATES OF UNSTABLE AUTOREGRESSIVE PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1988, 16 (01) :367-401
[5]  
DIEBOLD FX, 1988, 41 FED RES BOARD TEC
[6]   NON-CENTRAL LIMIT-THEOREMS FOR NONLINEAR FUNCTIONALS OF GAUSSIAN FIELDS [J].
DOBRUSHIN, RL ;
MAJOR, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01) :27-52
[8]  
MAJOR P, 1981, LECTURE NOTES MATH, V849
[9]  
PROTTER P, 1990, STOCHASTIC INTEGRATI
[10]  
Robinson PM, 1994, ADV ECONOMETRICS, V1, P47