GENERIC RIGIDITY PERCOLATION - THE PEBBLE GAME

被引:363
作者
JACOBS, DJ [1 ]
THORPE, MF [1 ]
机构
[1] MICHIGAN STATE UNIV,CTR FUNDAMENTAL MAT RES,E LANSING,MI 48824
关键词
D O I
10.1103/PhysRevLett.75.4051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The percolation of rigidity in 2D central-force networks with no special symmetries (generic networks) has been studied using a new combinatorial algorithm. :We count the exact number of floppy modes, uniquely decompose the network into rigid clusters, and determine all overconstrained regions. With this information we have found that, for the generic triangular lattice with random bond dilution, the transition from rigid to floppy occurs at p(een) = 0.6602 +/- 0.0003 and the critical exponents include nu = 1.21 +/- 0.06 and beta = 0.18 +/- 0.02.
引用
收藏
页码:4051 / 4054
页数:4
相关论文
共 29 条
[11]  
Obukhov S.P., Phys. Rev. Lett., 74, (1995)
[12]  
Feng S., Thorpe M.F., Garboczi E.J., Phys. Rev. B, 31, (1984)
[13]  
He H., Thorpe M.F., Phys. Rev. Lett., 54, (1985)
[14]  
Cai Y., Thorpe M.F., Phys. Rev. B, 40, (1989)
[15]  
Phillips J.C., J. Non-Cryst. Solids, 34, (1979)
[16]  
Phillips J.C., J. Non-Cryst. Solids, 43, (1981)
[17]  
Tatsumisago M., Halfpap B.L., Green J.L., Lindsay S.M., Angell C.A., Phys. Rev. Lett., 64, (1990)
[18]  
Bvhmer R., Angell C.A., Phys. Rev. B, 45, (1992)
[19]  
Hendrickson B., Conditions for Unique Graph Realizations, SIAM Journal on Computing, 21, (1992)
[20]  
Hendrickson B.