POST-GAUSSIAN VARIATIONAL METHOD FOR THE NONLINEAR SCHRODINGER-EQUATION - SOLITON BEHAVIOR AND BLOWUP

被引:17
作者
COOPER, F
SHEPARD, H
LUCHERONI, C
SODANO, P
机构
[1] UNIV PERUGIA,DIPARTIMENTO FIS,I-06100 PERUGIA,ITALY
[2] UNIV PERUGIA,SEZ INFU,I-06100 PERUGIA,ITALY
[3] UNIV NEW HAMPSHIRE,DEPT PHYS,DURHAM,NH 03824
来源
PHYSICA D | 1993年 / 68卷 / 3-4期
关键词
D O I
10.1016/0167-2789(93)90129-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Dirac's time-dependent variational principle to discuss several features of the general nonlinear Schrodinger equation i(partial derivative psi/partial derivative t) + del2psi + \psi*psi\(kappa)psi = 0 in d spatial dimensions for arbitrary nonlinearity parameter kappa. We employ a family of trial variational wave functions, more general than Gaussians, which can be treated analytically and which preserve the canonical structure (and hence the conservation laws) of the exact system. As examples, we derive an approximation to the one-dimensional soliton solution and demonstrate the ''universality'' of the critical exponent for blowup in the supercritical case, kappad > 2. For the critical case kappad = 2, we find that one gets an excellent estimate for the critical mass necessary for blowup when we minimize the blowup mass with respect to the non-Gaussian variational parameter.
引用
收藏
页码:344 / 350
页数:7
相关论文
共 12 条
[11]   ON THE BOUND-STATES OF THE NONLINEAR SCHRODINGER-EQUATION WITH A LINEAR POTENTIAL [J].
ROSE, HA ;
WEINSTEIN, MI .
PHYSICA D, 1988, 30 (1-2) :207-218
[12]   THE NONLINEAR SCHRODINGER LIMIT OF THE ZAKHAROV EQUATIONS GOVERNING LANGMUIR TURBULENCE [J].
SCHOCHET, SH ;
WEINSTEIN, MI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (04) :569-580