Silicon Quantum Dots in a Dielectric Matrix for All-Silicon Tandem Solar Cells

被引:126
作者
Cho, Eun-Chel [1 ]
Green, Martin A. [1 ]
Conibeer, Gavin [1 ]
Song, Dengyuan [1 ]
Cho, Young-Hyun [1 ]
Scardera, Giuseppe [1 ]
Huang, Shujuan [1 ]
Park, Sangwook [1 ]
Hao, X. J. [1 ]
Huang, Yidan [1 ]
Van Dao, Lap [2 ]
机构
[1] Univ New South Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia
[2] Swinburne Univ Technol, ARC Ctr Excellence Coherent X Ray Sci, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1155/2007/69578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report work progress on the growth of Si quantum dots in different matrices for future photovoltaic applications. The work reported here seeks to engineer a wide-bandgap silicon-based thin-film material by using quantum confinement in silicon quantum dots and to utilize this in complete thin-film silicon-based tandem cell, without the constraints of lattice matching, but which nonetheless gives an enhanced efficiency through the increased spectral collection efficiency. Coherent-sized quantum dots, dispersed in a matrix of silicon carbide, nitride, or oxide, were fabricated by precipitation of Si-rich material deposited by reactive sputtering or PECVD. Bandgap opening of Si QDs in nitride is more blue-shifted than that of Si QD in oxide, while clear evidence of quantum confinement in Si quantum dots in carbide was hard to obtain, probably due to many surface and defect states. The PL decay shows that the lifetimes vary from 10 to 70 microseconds for diameter of 3.4nm dot with increasing detection wavelength. Copyright (C) 2007 Eun-Chel Cho et al.
引用
收藏
页数:11
相关论文
共 48 条
[1]   AMORPHOUS-SEMICONDUCTOR SUPER-LATTICES [J].
ABELES, B ;
TIEDJE, T .
PHYSICAL REVIEW LETTERS, 1983, 51 (21) :2003-2006
[2]   Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy [J].
Akcakir, O ;
Therrien, J ;
Belomoin, G ;
Barry, N ;
Muller, JD ;
Gratton, E ;
Nayfeh, M .
APPLIED PHYSICS LETTERS, 2000, 76 (14) :1857-1859
[3]   CONTACT CURRENTS IN SILICON-NITRIDE [J].
ARNETT, PC ;
DIMARIA, DJ .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (05) :2092-2097
[4]   A low-temperature solution phase route for the synthesis of silicon nanoclusters [J].
Bley, RA ;
Kauzlarich, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (49) :12461-12462
[5]   GROWTH OF A GAAS-GAAIAS SUPERLATTICE [J].
CHANG, LL ;
ESAKI, L ;
HOWARD, WE ;
LUDEKE, R .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1973, 10 (01) :11-16
[6]   Clear quantum-confined luminescence from-crystalline silicon/SiO2 single quantum wells [J].
Cho, EC ;
Green, MA ;
Xia, J ;
Corkish, R ;
Reece, P ;
Gal, M .
APPLIED PHYSICS LETTERS, 2004, 84 (13) :2286-2288
[7]  
CHO EC, 2004, P 19 EUR PHOT SOL EN, P235
[8]  
Cho Y. H., 2005, P 20 EUR PHOT SOL EN, P47
[9]   Silicon nanostructures for third generation photovoltaic solar cells [J].
Conibeer, Gavin ;
Green, Martin ;
Corkish, Richard ;
Cho, Young ;
Cho, Eun-Chel ;
Jiang, Chu-Wei ;
Fangsuwannarak, Thipwan ;
Pink, Edwin ;
Huang, Yidan ;
Puzzer, Tom ;
Trupke, Thorsten ;
Richards, Bryce ;
Shalav, Avi ;
Lin, Kuo-lung .
THIN SOLID FILMS, 2006, 511 :654-662
[10]   Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy [J].
Dovrat, M ;
Goshen, Y ;
Jedrzejewski, J ;
Balberg, I ;
Sa'ar, A .
PHYSICAL REVIEW B, 2004, 69 (15) :155311-1