FRACTAL DIMENSION IN NONHYPERBOLIC CHAOTIC SCATTERING

被引:112
作者
LAU, YT [1 ]
FINN, JM [1 ]
OTT, E [1 ]
机构
[1] UNIV MARYLAND,DEPT PHYS,PLASMA RES LAB,COLLEGE PK,MD 20742
关键词
D O I
10.1103/PhysRevLett.66.978
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In chaotic scattering there is a Cantor set of input-variable values of zero Lebesgue measure (i.e., zero total length) on which the scattering function is singular. For cases where the dynamics leading to chaotic scattering is nonhyperbolic (e.g., there are Kolmogorov-Arnol'd-Moser tori), the nature of this singular set is fundamentally different from that in the hyperbolic case. In particular, for the nonhyperbolic case, although the singular set has zero total length, we present strong evidence that its fractal dimension is 1.
引用
收藏
页码:978 / 981
页数:4
相关论文
共 27 条
[1]   BIFURCATION TO CHAOTIC SCATTERING [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E .
PHYSICA D, 1990, 46 (01) :87-121
[2]   ROUTES TO CHAOTIC SCATTERING [J].
BLEHER, S ;
OTT, E ;
GREBOGI, C .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :919-922
[3]   CHAOTIC SCATTERING IN SEVERAL DIMENSIONS [J].
CHEN, Q ;
DING, MZ ;
OTT, E .
PHYSICS LETTERS A, 1990, 145 (2-3) :93-100
[4]  
CHIRIKOV BV, 1984, PHYSICA D, V13, P364
[5]  
DEVOGELAERE R, 1958, CONTRIBUTIONS THEORY, V4, P53
[6]   TRANSITION TO CHAOTIC SCATTERING [J].
DING, M ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1990, 42 (12) :7025-7040
[7]   LIE SERIES AND INVARIANT FUNCTIONS FOR ANALYTIC SYMPLECTIC MAPS [J].
DRAGT, AJ ;
FINN, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (12) :2215-2227
[8]   IRREGULAR SCATTERING [J].
ECKHARDT, B .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 33 (1-3) :89-98
[9]   FRACTAL PROPERTIES OF SCATTERING SINGULARITIES [J].
ECKHARDT, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (17) :5971-5979
[10]  
GASPARD P, 1989, J CHEM PHYS, V90, P2225, DOI 10.1063/1.456017