ELECTROCHEMICAL REDUCTION OF CO2 CATALYZED BY [PD(TRIPHOSPHINE)(SOLVENT)](BF4)2 COMPLEXES - SYNTHETIC AND MECHANISTIC STUDIES

被引:166
作者
DUBOIS, DL [1 ]
MIEDANER, A [1 ]
HALTIWANGER, RC [1 ]
机构
[1] UNIV COLORADO,DEPT CHEM & BIOCHEM,BOULDER,CO 80309
关键词
D O I
10.1021/ja00023a023
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The free radical addition of phosphorus-hydrogen bonds to carbon-carbon double bonds has been used to prepare a number of new tridentate ligands containing phosphorus. Reactions of these tridentate ligands with [Pd(CH3CN)4](BF4)2 yield the corresponding [Pd(tridentate)(CH3CN)](BF4)2 complexes. These complexes catalyze the electrochemical reduction of CO2 to CO in acidic dimethylformamide or acetonitrile solutions if the tridentate ligand is a linear triphosphine ligand. Complexes in which one or more of the phosphorus atoms of the tridentate ligand have been substituted with a nitrogen or sulfur heteroatom do not catalyze the electrochemical reduction of C02. Kinetic studies on [Pd(etpC)(CH3CN)](BPh4)2 (where etpC is bis[(dicyclohexylphosphino)ethyl]phenylphosphine) show that, at acid concentrations above 1.0 X 10(-2) M, the reaction is first order in catalyst, first order in CO2, and independent of acid concentration. At acid concentrations less than 4.0 X 10(-3) M, the catalytic rate is first order in catalyst, second order in acid, and independent of CO2. The rate is also solvent dependent. A mechanism is proposed to account for these data. Comparison of the rate constants for catalysts with different alkyl and aryl substituents on the terminal phosphorus atoms indicates that the rate of reaction of the palladium(I) intermediates with CO2 increases with the electron-donating ability of the R groups, and that steric interactions are of less importance. In contrast, the rate constants decrease with increasing steric bulk for substituents on the central phosphorus atoms of the triphosphine ligand. Other relationships between ligand structure and catalyst activity, selectivity, and stability are also discussed. An X-ray diffraction study of the catalytic decomposition product [Pd(etp)]2(BF4)2 (where etp is bis[(diphenylphosphino)-ethyl] phenylphosphine) has been carried out. [Pd(etP)]2(BF4)2 crystallizes in the monoclinic space group P2(1)/n with a = 13.842 (6) angstrom, b = 28.055 (8) angstrom, c = 19.596 (7) angstrom, beta = 95.80 (3)degrees, upsilon = 7571 (5) angstrom3, and Z = 4. The structure was refined to R = 0.057 and R(w) = 0.0809 for 10 352 independent reflections (F > 6-sigma(F)). This Pd(I) dimer is bridged by two triphosphine ligands. A dihedral angle of 67-degrees exists between the two nearly square planar PdP3 fragments of [Pd(etP)]2(BF4)2. This dimer can be reoxidized to regenerate the catalytically active complexes.
引用
收藏
页码:8753 / 8764
页数:12
相关论文
共 65 条
[31]  
FISCHER B, 1980, J AM CHEM SOC, V102, P7363
[32]   REVERSIBLE DISPLACEMENT OF DIHYDROGEN BY CARBON-MONOXIDE IN BINUCLEAR PLATINUM COMPLEXES - CHARACTERIZATION OF BINUCLEAR CARBONYL-COMPLEXES OF PLATINUM(I) [J].
FISHER, JR ;
MILLS, AJ ;
SUMNER, S ;
BROWN, MP ;
THOMSON, MA ;
PUDDEPHATT, RJ ;
FREW, AA ;
MANOJLOVICMUIR, L ;
MUIR, KW .
ORGANOMETALLICS, 1982, 1 (11) :1421-1429
[33]  
FLUCK E, 1987, METHODS STEREOCHEMIC, V8, P88
[34]   ELECTROCATALYTIC REDUCTION OF CO2 BY NICKEL(II) CYCLAM - STUDY OF THE REDUCTION-MECHANISM ON MERCURY BY CYCLIC VOLTAMMETRY, POLAROGRAPHY AND ELECTROCAPILLARITY [J].
FUJIHIRA, M ;
HIRATA, Y ;
SUGA, K .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 292 (1-2) :199-215
[36]   PREPARATION AND PROPERTIES OF SOME BIVALENT TRANSITION-METAL TETRAFLUOROBRRATE-METHYL CYANIDE COMPLEXES [J].
HATHAWAY, BJ ;
HOLAH, DG ;
UNDERHILL, AE .
JOURNAL OF THE CHEMICAL SOCIETY, 1962, (JUN) :2444-&
[37]  
HIETKAMP S, 1987, Z NATURFORSCH B, V42, P177
[38]  
HUANG CY, 1983, CONT ENZYME KINETICS, P1
[39]   ELECTROCHEMICAL CO2 REDUCTION CATALYZED BY [RU(BPY)2(CO)2]2+ AND [RU(BPY)2(CO)CL]+ - THE EFFECT OF PH ON THE FORMATION OF CO AND HCOO- [J].
ISHIDA, H ;
TANAKA, K ;
TANAKA, T .
ORGANOMETALLICS, 1987, 6 (01) :181-186
[40]  
Jarchow O., 1970, ANGEW CHEM INT EDIT, V9, P71