An approach to ultra-high load solid (gel) phase peptide synthesis is described in which a bead-form phenolic core polymer, crosslinked poly[N-{2-(4-hydroxyphenyl)ethyl}-acrylamide], is used as a support matrix at near theoretical maximum loading. Consecutive repeating units of the core polymer carry peptide chains undergoing stepwise elongation. Synthesis proceeds through a series of solvated networks, which consists mainly of protected peptide. The solvated networks are deemed to be quasi-homogeneous, insofar as each has a regular covalent framework and each is believed to be uniformly distributed throughout the gel beads. Illustrative synthesis of two fully-protected acylpeptide hydrazide segments, corresponding to dynorphin (6-12) and to .beta.h-endorphin (18-26), are described.