ASYMPTOTIC (SHORT-WAVE) EQUIVALENCE OF ONE-DIMENSIONAL SCHRODINGER-EQUATIONS BY FORMAL CANONICAL-TRANSFORMATIONS AND ITS GENERALIZATIONS

被引:7
作者
AQUILANTI, V [1 ]
CAVALLI, S [1 ]
SEVRYUK, MB [1 ]
机构
[1] MOSCOW ENERGY PROBLEMS CHEM PHYS INST, MOSCOW 117829, USSR
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 19期
关键词
D O I
10.1088/0305-4470/24/19/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the asymptotic equivalence of systems of two ordinary first-order differential equations with an arbitrary finite number and multiplicities of turning points. The theory is exemplified by the short-wave (semiclassical) equivalence of time-independent one-dimensional Schrodinger equations. We describe the set of all transformation matrices realizing the equivalence; the use of their determinant properties simplifies the calculations needed for applications. For the particular case of Schrodinger equations the transformation matrix can be chosen to be canonical.
引用
收藏
页码:4475 / 4494
页数:20
相关论文
共 75 条
[1]  
Amold V. I., 1978, ORDINARY DIFFERENTIA
[2]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[3]   ASYMPTOTIC SOLUTION OF EIGENVALUE PROBLEMS FOR 2ND-ORDER ORDINARY DIFFERENTIAL EQUATIONS [J].
ANYANWU, DU ;
KELLER, JB .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (06) :753-763
[8]   UNIFORM APPROXIMATIONS FOR THE NATURAL-MODES AND FREQUENCIES OF SPINDLE-SHAPED ACOUSTICAL RESONATORS [J].
ANYANWU, DU ;
NWOKE, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 134 (02) :396-407
[9]  
ANYANWU DU, 1978, COMMUN PUR APPL MATH, V31, P107
[10]   AN ASYMPTOTIC THEORY OF CLAD INHOMOGENEOUS PLANAR WAVE-GUIDES .2. SOLUTIONS OF THE EIGENVALUE EQUATION [J].
ARNOLD, JM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (09) :3083-3095