ASYMPTOTIC (SHORT-WAVE) EQUIVALENCE OF ONE-DIMENSIONAL SCHRODINGER-EQUATIONS BY FORMAL CANONICAL-TRANSFORMATIONS AND ITS GENERALIZATIONS

被引:7
作者
AQUILANTI, V [1 ]
CAVALLI, S [1 ]
SEVRYUK, MB [1 ]
机构
[1] MOSCOW ENERGY PROBLEMS CHEM PHYS INST, MOSCOW 117829, USSR
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 19期
关键词
D O I
10.1088/0305-4470/24/19/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the asymptotic equivalence of systems of two ordinary first-order differential equations with an arbitrary finite number and multiplicities of turning points. The theory is exemplified by the short-wave (semiclassical) equivalence of time-independent one-dimensional Schrodinger equations. We describe the set of all transformation matrices realizing the equivalence; the use of their determinant properties simplifies the calculations needed for applications. For the particular case of Schrodinger equations the transformation matrix can be chosen to be canonical.
引用
收藏
页码:4475 / 4494
页数:20
相关论文
共 75 条
[51]  
MCHUGH J, 1971, ARCH HIST EXACT SCI, V7, P277
[52]  
McKelvey R. W., 1955, T AM MATH SOC, V79, P103
[53]   EXPONENTIAL ASYMPTOTICS [J].
MEYER, RE .
SIAM REVIEW, 1980, 22 (02) :213-224
[54]  
NISHIMOTO T, 1973, KODAI MATH SEM REP, V25, P458
[55]  
O'Malley R.E., 1970, SIAM J MATH ANAL, V1, P479, DOI 10.1137/0501041
[56]  
OKUBO K, 1961, P JAPAN ACAD, V39, P544
[57]   CONNECTION FORMULAS FOR 2ND-ORDER DIFFERENTIAL-EQUATIONS WITH MULTIPLE TURNING POINTS [J].
OLVER, FWJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (01) :127-154
[58]   GENERAL CONNECTION FORMULAS FOR LIOUVILLE-GREEN APPROXIMATIONS IN COMPLEX PLANE [J].
OLVER, FWJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1364) :501-548
[59]   SECOND-ORDER LINEAR-DIFFERENTIAL EQUATIONS WITH 2 TURNING POINTS [J].
OLVER, FWJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1279) :137-174
[60]  
RUBENFELD LA, 1977, SIAM J APPL MATH, V32, P1