Actin genic regions were isolated and characterized from the heterokont-flagellated protists, Achlya bisexualis (Oomycota) and Costaria costata (Chromophyta). Restriction enzyme and cloning experiments suggested that the genes are present in a single copy and sequence determinations revealed the existence of two introns in the C. costata actin genic region. Phylogenetic analyses of actin genic regions using distance matrix and maximum parsimony methods confirmed the close evolutionary relationship of A. bisexualis and C costata suggested by ribosomal DNA (rDNA) sequence comparisons and reproductive cell ultrastructure. The higher fungi, green plants, and animals were seen as monophyletic groups; however, a precise order of branching for these assemblages could not be determined. Phylogenetic frameworks inferred from comparisons of rRNAs were used to assess rates of evolution in actin genic regions of diverse eukaryotes. Actin genic regions had nonuniform rates of nucleotide substitution in different lineages. Comparison of rates of actin and rDNA sequence divergence indicated that actin genic regions evolve 2.0 and 5.3 times faster in higher fungi and flowering plants, respectively, than their rDNA sequences. Conversely, animal actins evolve at approximately one-fifth the rate of their rDNA sequences.