FRACTAL PATH-INTEGRALS WITH APPLICATIONS TO QUANTUM MANY-BODY SYSTEMS

被引:25
作者
SUZUKI, M
机构
[1] Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo
来源
PHYSICA A | 1992年 / 191卷 / 1-4期
关键词
D O I
10.1016/0378-4371(92)90574-A
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general formulation of the fractal decomposition of exponential operators is reviewed briefly and its mathematical structure is discussed together with some applications to quantum many-body systems. More explicitly, the operator e(x(A + B) is decomposed into a product of the form e(x(A + B)) = f(m)(x) + O(x(m+1)) with f(m)(x) = e(t1xA) e(t2xB) e(t3xA) e(t4xB) ... e(tMxB). The parameters {t(j)} show a fractal structure as shown in the text.
引用
收藏
页码:501 / 515
页数:15
相关论文
共 23 条
[1]   IMPROVED EXPONENTIAL SPLIT OPERATOR METHOD FOR SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
BANDRAUK, AD ;
SHEN, H .
CHEMICAL PHYSICS LETTERS, 1991, 176 (05) :428-432
[2]  
DEVRIES P, 1991, THESIS NATURKINDIG L
[3]   A HAMILTONIAN-FREE DESCRIPTION OF SINGLE-PARTICLE DYNAMICS FOR HOPELESSLY COMPLEX PERIODIC-SYSTEMS [J].
FOREST, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1133-1144
[4]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[5]  
Forest E., PREPRINT
[6]   TRANSFER-MATRIX CALCULATIONS OF THE SPIN 1/2 ANTIFERROMAGNETIC XXZ MODEL ON THE 4X2 TRIANGULAR LATTICE USING THE FRACTAL DECOMPOSITION [J].
HATANO, N ;
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (03) :481-492
[7]   PROPERTIES OF HIGHER-ORDER TROTTER FORMULAS [J].
JANKE, W ;
SAUER, T .
PHYSICS LETTERS A, 1992, 165 (03) :199-205
[8]   GENERALIZED CUMULANT EXPANSION METHOD [J].
KUBO, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1962, 17 (07) :1100-&
[9]  
Neri F., 1988, PREPRINT
[10]   THE MAGNUS EXPANSION FOR CLASSICAL HAMILTONIAN-SYSTEMS [J].
OTEO, JA ;
ROS, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (24) :5751-5762