THE MAGNUS EXPANSION FOR CLASSICAL HAMILTONIAN-SYSTEMS

被引:25
作者
OTEO, JA [1 ]
ROS, J [1 ]
机构
[1] UNIV VALENCIA,CSIC,IFIC,CTR MIXT,E-46100 BURJASSOT,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 24期
关键词
D O I
10.1088/0305-4470/24/24/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie operator techniques and the Magnus expansion are developed in the framework of classical mechanics. This leads to an exponential perturbation theory that preserves the canonical character at each order of approximation. The treatment is kept as close as possible to the quantum mechanical case in order to take full advantage of the properties of the expansion. The explicit relationship with secular perturbation theory is established and a recursive procedure for obtaining higher-order approximants is provided. Finally, the formalism is applied to two problems of physical interest.
引用
收藏
页码:5751 / 5762
页数:12
相关论文
共 34 条
[1]   MAGNUS EXPANSION GENERATOR [J].
BURUM, DP .
PHYSICAL REVIEW B, 1981, 24 (07) :3684-3692
[2]   ROTATIONAL SPECTRAL-LINE BROADENING OF OCS BY NOBLE-GASES [J].
CADY, WA .
JOURNAL OF CHEMICAL PHYSICS, 1974, 60 (08) :3318-3323
[3]   LIE TRANSFORM PERTURBATION-THEORY FOR HAMILTONIAN-SYSTEMS [J].
CARY, JR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 79 (02) :129-159
[4]   INFRARED DYNAMICS OF QUANTUM ELECTRODYNAMICS AND THE ASYMPTOTIC-BEHAVIOR OF THE ELECTRON FORM-FACTOR [J].
DAHMEN, HD ;
SCHOLZ, B ;
STEINER, F .
NUCLEAR PHYSICS B, 1982, 202 (03) :365-381
[5]   AN ALGEBRAIC VIEW TO THE OPERATORIAL ORDERING AND ITS APPLICATIONS TO OPTICS [J].
DATTOLI, G ;
GALLARDO, JC ;
TORRE, A .
RIVISTA DEL NUOVO CIMENTO, 1988, 11 (11) :1-79
[6]  
Deprit A., 1969, Celestial Mechanics, V1, P12, DOI 10.1007/BF01230629
[7]   RENORMALIZED CANONICAL PERTURBATION-THEORY FOR STOCHASTIC PROPAGATORS [J].
DEWAR, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (12) :2043-2057
[8]   EXACT OSCILLATION-CENTER TRANSFORMATIONS [J].
DEWAR, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (01) :9-26
[9]   MAGNUS EXPANSION AND THE 2-NEUTRINO OSCILLATIONS IN MATTER [J].
DOLIVO, JC ;
OTEO, JA .
PHYSICAL REVIEW D, 1990, 42 (01) :256-259
[10]   LIE ALGEBRAIC TREATMENT OF LINEAR AND NONLINEAR BEAM DYNAMICS [J].
DRAGT, AJ ;
NERI, F ;
RANGARAJAN, G ;
DOUGLAS, DR ;
HEALY, LM ;
RYNE, RD .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 1988, 38 :455-496