THE MAGNUS EXPANSION FOR CLASSICAL HAMILTONIAN-SYSTEMS

被引:25
作者
OTEO, JA [1 ]
ROS, J [1 ]
机构
[1] UNIV VALENCIA,CSIC,IFIC,CTR MIXT,E-46100 BURJASSOT,SPAIN
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 24期
关键词
D O I
10.1088/0305-4470/24/24/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lie operator techniques and the Magnus expansion are developed in the framework of classical mechanics. This leads to an exponential perturbation theory that preserves the canonical character at each order of approximation. The treatment is kept as close as possible to the quantum mechanical case in order to take full advantage of the properties of the expansion. The explicit relationship with secular perturbation theory is established and a recursive procedure for obtaining higher-order approximants is provided. Finally, the formalism is applied to two problems of physical interest.
引用
收藏
页码:5751 / 5762
页数:12
相关论文
共 34 条
[11]   COMPUTATION OF NONLINEAR BEHAVIOR OF HAMILTONIAN-SYSTEMS USING LIE ALGEBRAIC METHODS [J].
DRAGT, AJ ;
FOREST, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (12) :2734-2744
[12]   LIE SERIES AND INVARIANT FUNCTIONS FOR ANALYTIC SYMPLECTIC MAPS [J].
DRAGT, AJ ;
FINN, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (12) :2215-2227
[13]  
DRAGT AJ, 1990, UNPUB PHYS REV D
[14]  
DRAGT AJ, 1987, AIP C P, V89
[15]   ON SOME APPLICATIONS OF MAGNUS EXPANSION IN NUCLEAR MAGNETIC RESONANCE [J].
EVANS, WAB .
ANNALS OF PHYSICS, 1968, 48 (01) :72-&
[16]   ON THE CONVERGENCE OF THE MAGNUS EXPANSION FOR SPIN SYSTEMS IN PERIODIC MAGNETIC-FIELDS [J].
FELDMAN, EB .
PHYSICS LETTERS A, 1984, 104 (09) :479-481
[17]  
FER F, 1958, B CLASSE SCI ACAD R, V44, P818
[18]   THE MAGNUS EXPANSION FOR THE HARMONICALLY DRIVEN HARMONIC-OSCILLATOR - COMMENT [J].
FERNANDEZ, FM .
JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (01) :490-491
[19]   4TH-ORDER SYMPLECTIC INTEGRATION [J].
FOREST, E ;
RUTH, RD .
PHYSICA D, 1990, 43 (01) :105-117
[20]   EXPONENTIAL INFINITE-PRODUCT REPRESENTATIONS OF THE TIME-DISPLACEMENT OPERATOR [J].
KLARSFELD, S ;
OTEO, JA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14) :2687-2694