CONVERGENCE OF THE POINT VORTEX METHOD FOR THE 2-D EULER EQUATIONS

被引:101
作者
GOODMAN, J
HOU, TY
LOWENGRUB, J
机构
关键词
D O I
10.1002/cpa.3160430305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove consistency, stability and convergence of the point vortex approximation to the 2‐D incompressible Euler equations with smooth solutions. We first show that the discretization error is second‐order accurate. Then we show that the method is stable in lp norm. Consequently the method converges in lp norm for all time. The convergence is also illustrated by a numerical experiment. Copyright © 1990 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:415 / 430
页数:16
相关论文
共 16 条
[1]   ON VORTEX METHODS [J].
ANDERSON, C ;
GREENGARD, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (03) :413-440
[2]   A CONVERGENT 3-D VORTEX METHOD WITH GRID-FREE STRETCHING [J].
BEALE, JT .
MATHEMATICS OF COMPUTATION, 1986, 46 (174) :401-424
[3]  
BEALE JT, 1982, MATH COMPUT, V32, P29
[4]   CONVERGENCE OF THE VORTEX METHOD FOR VORTEX SHEETS [J].
CAFLISCH, RE ;
LOWENGRUB, JS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1060-1080
[5]   Numerical study of slightly viscous flow [J].
Chorin, Alexandre Joel .
JOURNAL OF FLUID MECHANICS, 1973, 57 :785-796
[6]  
COTTET GH, PARTICLE METHOD SO 2
[7]  
Dahlquist G., 1974, NUMERICAL METHODS
[8]  
Folland G.B., 1976, INTRO PARTIAL DIFFER
[9]  
GOODMAN J, UNPUB CONVERGENCE VO
[10]   CONVERGENCE OF VORTEX METHODS FOR EULERS EQUATIONS .2. [J].
HALD, OH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (05) :726-755