CONVERGENCE OF THE POINT VORTEX METHOD FOR THE 2-D EULER EQUATIONS

被引:101
作者
GOODMAN, J
HOU, TY
LOWENGRUB, J
机构
关键词
D O I
10.1002/cpa.3160430305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove consistency, stability and convergence of the point vortex approximation to the 2‐D incompressible Euler equations with smooth solutions. We first show that the discretization error is second‐order accurate. Then we show that the method is stable in lp norm. Consequently the method converges in lp norm for all time. The convergence is also illustrated by a numerical experiment. Copyright © 1990 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:415 / 430
页数:16
相关论文
共 16 条
[11]  
HOU T, UNPUB COMM PURE APPL
[12]  
Kato T., 1967, ARCH RATION MECH AN, V25, P188, DOI [10.1007/BF00251588, DOI 10.1007/BF00251588]
[13]   VORTEX METHODS FOR FLOW SIMULATION [J].
LEONARD, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (03) :289-335
[14]  
PEARLMAN M, 1985, J COMP PHYS, V59, P200
[15]  
Stein E. M., 1970, SINGULAR INTEGRAL DI
[16]  
Strang G, 1964, NUMER MATH, V6, P37