MODERN NONLINEAR-REGRESSION METHODS

被引:58
作者
FRANK, IE
机构
关键词
D O I
10.1016/0169-7439(94)00005-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Several nonparametric nonlinear regression models are discussed and compared. Instead of forcing a predefined analytical form on the data, these methods approximate the underlying nonlinear function using smoothers or splines on the training data set. The performances of these methods are compared in a Monte Carlo simulation study and illustrated on a data set from food chemistry.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 12 条
[1]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[2]  
Brieman L., 1984, CLASSIFICATION REGRE
[3]   A NONLINEAR PLS MODEL [J].
FRANK, IE .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1990, 8 (02) :109-119
[4]  
FRANK LE, 1988, CHEMOMETRICS INTELLI, V3, P301
[5]   PROJECTION PURSUIT REGRESSION [J].
FRIEDMAN, JH ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :817-823
[6]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[7]  
FRIEDMAN JH, 1985, 12 STANF U DEP STAT
[8]  
FRIEDMAN JH, 1984, 5 STANF U DEP STAT T
[9]   MARS - A TUTORIAL [J].
SEKULIC, S ;
KOWALSKI, BR .
JOURNAL OF CHEMOMETRICS, 1992, 6 (04) :199-216
[10]   SPLINES IN STATISTICS [J].
WEGMAN, EJ ;
WRIGHT, IW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (382) :351-365