Determination of Optimal SVM Parameters by Using GA/PSO

被引:96
作者
Ren, Yuan [1 ]
Bai, Guangchen [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Jet Propuls, Beijing, Peoples R China
关键词
support vector machine; cross validation; genetic algorithm; particle swarm optimization;
D O I
10.4304/jcp.5.8.1160-1168
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The use of support vector machine (SVM) for function approximation has increased over the past few years. Unfortunately, the practical use of SVM is limited because the quality of SVM models heavily depends on a proper setting of SVM hyper-parameters and SVM kernel parameters. Therefore, it is necessary to develop an automated, reliable, and relatively fast approach to determine the values of these parameters that lead to the lowest generalization error. This paper presents two SVM parameter optimization approaches, i.e. GA-SVM and PSO-SVM. Both of them adopt a objective function which is based on the leave-one-out cross-validation, and the SVM parameters are optimized by using GA (genetic algorithm) and PSO (particle swarm optimization) respectively. From experiment results, it can be concluded that both approaches, especially PSO-SVM, can solve the problem of estimating the optimal SVM parameter settings at a reasonable computational cost. Further, we point out the importance of a proper population size for GA/PSO-SVM, and present the recommended population size for GA-SVM and PSO-SVM.
引用
收藏
页码:1160 / 1168
页数:9
相关论文
共 8 条
[1]  
Barton RR, 2006, HBK OPERAT RES MANAG, V13, P535, DOI 10.1016/S0927-0507(06)13018-2
[2]   Practical selection of SVM parameters and noise estimation for SVM regression [J].
Cherkassky, V ;
Ma, YQ .
NEURAL NETWORKS, 2004, 17 (01) :113-126
[3]  
Ito K, 2003, IEEE IJCNN, P2077
[4]   Performance measures for selection of metamodels to be used in simulation optimization [J].
Keys, AC ;
Rees, LP ;
Greenwood, AG .
DECISION SCIENCES, 2002, 33 (01) :31-57
[5]   Quantum-inspired evolutionary tuning of SVM parameters [J].
Luo, Zhiyong ;
Wang, Ping ;
Li, Yinguo ;
Zhang, Wenfeng ;
Tang, Wei ;
Xiang, Min .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (04) :475-480
[6]  
Rigoni E, 2007, IEEE SYS MAN CYBERN, P2120
[7]   Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization [J].
Üstün, B ;
Melssen, WJ ;
Oudenhuijzen, M ;
Buydens, LMC .
ANALYTICA CHIMICA ACTA, 2005, 544 (1-2) :292-305
[8]  
Yuan XF, 2008, J SYST ENG ELECTRON, V19, P191