BEAM ELEMENT MATRICES DERIVED FROM VLASOVS THEORY OF OPEN THIN-WALLED ELASTIC BEAMS

被引:99
作者
FRIBERG, PO
机构
关键词
D O I
10.1002/nme.1620210704
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:1205 / 1228
页数:24
相关论文
共 20 条
[11]  
Lancaster P., 1966, LAMBDA MATRICES VIBR
[12]   DAMPED 2ND-ORDER RAYLEIGH-TIMOSHENKO BEAM VIBRATION IN SPACE - AN EXACT COMPLEX DYNAMIC MEMBER STIFFNESS MATRIX [J].
LUNDEN, R ;
AKESSON, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (03) :431-449
[13]   ALGORITHM FOR GENERALIZED MATRIX EIGENVALUE PROBLEMS [J].
MOLER, CB ;
STEWART, GW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :241-256
[14]  
PARLETT B. N., 1980, SYMMETRIC EIGENVALUE, DOI DOI 10.1137/1.9781611971163
[15]   ACCURATE METHOD IN STRUCTURAL VIBRATION ANALYSIS [J].
RICHARDS, TH ;
LEUNG, YT .
JOURNAL OF SOUND AND VIBRATION, 1977, 55 (03) :363-376
[16]  
STRANG G, 1980, LINEAR ALGEBRA ITS A
[17]  
Vlasov V.Z., 1959, PST CAT, V428
[18]   GENERAL ALGORITHM FOR COMPUTING NATURAL FREQUENCIES OF ELASTIC STRUCTURES [J].
WITTRICK, WH ;
WILLIAMS, FW .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1971, 24 (AUG) :263-&
[19]  
1980, IMSL LIBRARY REFEREN
[20]  
[No title captured]