Multilevel least squares approximation of scattered data over binary triangulations

被引:5
作者
Hjelle, Oyvind [1 ]
Daehlen, Morten [1 ]
机构
[1] Simula Res Lab, POB 134, N-1325 Lysaker, Norway
关键词
D O I
10.1007/s00791-005-0154-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An adaptive method for approximating huge scattered data sets is presented. The approximation scheme generates multilevel triangulations obtained using a subdivision scheme known as longest edge bisection. Nested function spaces are defined over the multilevel triangulations. The approximation problem is solved by successive refinement of the triangulation while iterative methods are used for solving a system of linear equations at intermediate levels of the multi-level scheme. Regularization terms are coupled with a standard least squares formulation to guarantee uniqueness and control smoothness of the solution.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 26 条
[1]   APPROXIMATION OF SCATTERED DATA USING SMOOTH GRID FUNCTIONS [J].
ARGE, E ;
DAEHLEN, M ;
TVEITO, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (02) :191-205
[2]  
BRANDT A, 1986, APPL MATH COMPUT, V19, P23, DOI 10.1016/0096-3003(86)90095-0
[3]  
Brandt A., 1984, SPARSITY ITS APPL, P257
[4]  
Briggs WL, 2000, SOC IND APPL MATH, V2nd
[5]   DATA DEPENDENT TRIANGULATIONS FOR PIECEWISE LINEAR INTERPOLATION [J].
DYN, N ;
LEVIN, D ;
RIPPA, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :137-154
[6]  
Floater M. S., 1998, STF42A98013 SINTEE
[7]   Parametrization and smooth approximation of surface triangulations [J].
Floater, MS .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (03) :231-250
[8]   Hierarchical B-spline refinement [J].
Forsey, David R. ;
Bartels, Richard H. .
Computer Graphics (ACM), 1988, 22 (04) :205-212
[9]   SURFACE FITTING WITH HIERARCHICAL SPLINES [J].
FORSEY, DR ;
BARTELS, RH .
ACM TRANSACTIONS ON GRAPHICS, 1995, 14 (02) :134-161
[10]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200