Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 35 to 300 Å. These well-characterized sources have high peak brightness (GeV blackbody temperature) and narrow bandwidth making them ideal for x-ray imaging and interferometry. We will describe experiments which have used the yttrium neon-like x-ray laser operating at 155 Å to probe plasmas at electron densities exceeding 4×1021 cm-3. The short pulse duration of this x-ray laser (∼150 ps) has made it possible to image directly driven thin foils with 1-2 μm spatial resolution. Advances in multilayer mirrors and beam splitters have now also made it possible to develop x-ray laser interferometers. We will describe initial experiments to probe plasmas relevant to ICF using x-ray laser interferometry. The progress in the development of short pulse x-ray lasers (∼30 ps) which are ultimately necessary to extend x-ray laser diagnostic techniques to higher densities will also be presented. © 1995 American Institute of Physics.