PERIOD-DOUBLING CASCADES AND DEVILS STAIRCASES OF THE DRIVEN VANDERPOL OSCILLATOR

被引:208
作者
PARLITZ, U
LAUTERBORN, W
机构
来源
PHYSICAL REVIEW A | 1987年 / 36卷 / 03期
关键词
D O I
10.1103/PhysRevA.36.1428
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:1428 / 1434
页数:7
相关论文
共 23 条
[1]   UNIVERSALITY OF THE TOPOLOGY OF PERIOD DOUBLING DYNAMICAL-SYSTEMS [J].
BEIERSDORFER, P .
PHYSICS LETTERS A, 1984, 100 (08) :379-382
[2]  
Cartwright M., 1945, J LOND MATH SOC, V20, P180, DOI 10.1112/jlms/s1-20.3.180
[3]   RENORMALIZATION, UNSTABLE MANIFOLDS, AND THE FRACTAL STRUCTURE OF MODE-LOCKING [J].
CVITANOVIC, P ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1985, 55 (04) :343-346
[5]   PERIODICITY AND CHAOS IN COUPLED NON-LINEAR OSCILLATORS [J].
GOLLUB, JP ;
BRUNNER, TO ;
DANLY, BG .
SCIENCE, 1978, 200 (4337) :48-50
[6]   SINGULAR PERTURBATIONS AND A MAPPING ON AN INTERVAL FOR THE FORCED VANDERPOL RELAXATION-OSCILLATOR [J].
GRASMAN, J ;
NIJMEIJER, H ;
VELING, EJM .
PHYSICA D, 1984, 13 (1-2) :195-210
[8]   RELAXATION OSCILLATIONS GOVERNED BY A VANDERPOL EQUATION WITH PERIODIC FORCING TERM [J].
GRASMAN, J ;
VELING, EJM ;
WILLEMS, GM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (04) :667-676
[9]  
GRASMAN J, 1978, N HOLLAND MATH STUDI, V31, P93
[10]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42