LINEAR CONNECTIONS ON THE QUANTUM PLANE

被引:40
作者
DUBOISVIOLETTE, M [1 ]
MADORE, J [1 ]
MASSON, T [1 ]
MOURAD, J [1 ]
机构
[1] UNIV TOURS,MODELES PHYS MATH LAB,F-37200 TOURS,FRANCE
关键词
D O I
10.1007/BF00750842
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general definition has been proposed recently of a linear connection and a metric in noncommutative geometry. It is shown that to within normalization there is a unique linear connection on the quantum plane and there is no metric.
引用
收藏
页码:351 / 358
页数:8
相关论文
共 12 条
[1]   GRAVITY IN NONCOMMUTATIVE GEOMETRY [J].
CHAMSEDDINE, AH ;
FELDER, G ;
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :205-217
[2]  
Connes A., 1994, NONCOMMUTATIVE DIFFE
[3]  
CONNES A, 1986, PUBL MATH IHES, V62, P257
[4]  
DUBOISVIOLETTE M, 1988, CR ACAD SCI I-MATH, V307, P403
[5]  
DUBOISVIOLETTE M, 1995, LPTHE94100 ORSAY PRE
[6]   LANGUAGE OF QUANTUM SPACES AND QUANTUM GROUPS [J].
MALTSINIOTIS, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (02) :275-302
[8]  
MOURAD J, IN PRESS CLASSICAL Q
[9]  
Pusz W., 1989, Reports on Mathematical Physics, V27, P231, DOI 10.1016/0034-4877(89)90006-2
[10]  
Wess J., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P302, DOI 10.1016/0920-5632(91)90143-3