NONEQUILIBRIUM POTENTIAL FOR THE GINZBURG-LANDAU EQUATION IN THE PHASE-TURBULENT REGIME

被引:19
作者
DESCALZI, O
GRAHAM, R
机构
[1] Fachbereich Physik, Universität Essen, Essen, D-45141
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1994年 / 93卷 / 04期
关键词
D O I
10.1007/BF01314255
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The steady state distribution functional of the supercritical complex Ginzburg-Landau equation with weak noise is determined asymptotically for long-wavelength fluctuations including the phaseturbulent regime. This is done by constructing a non-equilibrium potential solving the Hamilton-Jacobi equation associated with the Fokker-Planck equation. The non-equilibrium potential serves as a Lyapunov functional. In parameter space it consists of two branches which are joined at the Benjamin-Feir instability. In the Benjamin-Feir stable regime the non-equilibrium potential has minima in the plane-wave attractors and our result generalizes to arbitrary dimension an earlier result for one dimension. Beyond the Benjamin-Feir instability the potential in the function space has a minimum which is degenerate with respect to arbitrary long-wavelength phase variations. The dynamics on the minimum set obey the generalized Kuramoto-Sivashinsky equation.
引用
收藏
页码:509 / 513
页数:5
相关论文
共 22 条
[1]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[2]   GRADIENT EXPANSION OF THE NONEQUILIBRIUM POTENTIAL FOR THE SUPERCRITICAL GINZBURG-LANDAU EQUATION [J].
DESCALZI, O ;
GRAHAM, R .
PHYSICS LETTERS A, 1992, 170 (02) :84-90
[3]   POTENTIAL FOR THE COMPLEX GINZBURG-LANDAU EQUATION [J].
GRAHAM, R ;
TEL, T .
EUROPHYSICS LETTERS, 1990, 13 (08) :715-720
[4]   LASERLIGHT - FIRST EXAMPLE OF A SECOND-ORDER TRANSITION FAR AWAY FROM THERMAL EQUILIBRIUM [J].
GRAHAM, R ;
HAKEN, H .
ZEITSCHRIFT FUR PHYSIK, 1970, 237 (01) :31-+
[5]   HYDRODYNAMIC FLUCTUATIONS NEAR CONVECTION INSTABILITY [J].
GRAHAM, R .
PHYSICAL REVIEW A, 1974, 10 (05) :1762-1784
[6]   STEADY-STATE ENSEMBLE FOR THE COMPLEX GINZBURG-LANDAU EQUATION WITH WEAK NOISE [J].
GRAHAM, R ;
TEL, T .
PHYSICAL REVIEW A, 1990, 42 (08) :4661-4677
[7]   CORRECTION [J].
GRAHAM, R .
PHYSICAL REVIEW A, 1992, 45 (06) :4198-4198
[8]  
GRAHAM R, 1989, NOISE NONLINEAR DYNA, V1
[9]  
HAKEN H, 1978, SPRINGER SERIES SYNE, V1
[10]  
HAKEN H, 1987, SPRINGER SERIES SYNE, V20