HALF-PLANE TRIMMING FOR BIVARIATE DISTRIBUTIONS

被引:48
作者
MASSE, JC
THEODORESCU, R
机构
[1] Université Laval, St Foy
关键词
MULTIVARIATE TRIMMING; QUANTILE FUNCTION; MULTIVARIATE MEDIAN; AFFINE EQUIVARIANCE;
D O I
10.1006/jmva.1994.1002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let mu be a probability measure on R2 and let u is-an-element-of (0, 1). A bivariate u-trimmed region D(u), defined as the intersection of all halfplanes whose mu-probability measure is at least equal to u, is studied. It is shown that D(u) is not empty for u sufficiently close to 1 and that D(u) satisfies some natural continuity properties. Limit behavior is also considered, the main result being that the weak convergence of a sequence of probability measures entails the pointwise convergence with respect to Hausdorff distance of the associated trimmed regions; this is then applied to derive asymptotics of the empirical trimmed regions. A brief discussion of the extension of the results to higher dimensions is also given. (C) 1994 Academic Press, Inc.
引用
收藏
页码:188 / 202
页数:15
相关论文
共 12 条
[1]  
BICKEL PJ, 1984, CONTRIBUTIONS STATIS, P33
[2]   UNIFORMITY IN WEAK CONVERGENCE [J].
BILLINGS.P ;
TOPSOE, F .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (01) :1-&
[3]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[4]   ON A-SYMMETRIC MULTIVARIATE DISTRIBUTIONS [J].
CAMBANIS, S ;
KEENER, R ;
SIMONS, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (02) :213-233
[5]   ON 64-PERCENT-MAJORITY RULE [J].
CAPLIN, A ;
NALEBUFF, B .
ECONOMETRICA, 1988, 56 (04) :787-814
[6]  
Donoho DL., 1982, BREAKDOWN PROPERTIES
[7]  
Eddy W. F., 1985, Computer Science and Statistics. Proceedings of the Sixteenth Symposium on the Interface, P25
[8]  
EDDY WF, 1984, TEUBNER TEXTE MATH, V56, P79
[9]   ASYMPTOTICS FOR MULTIVARIATE TRIMMING [J].
NOLAN, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 42 (01) :157-169
[10]  
Parthasarathy K. R., 1967, PROBABILITY MEASURES, V3