MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS

被引:233
作者
CAWLEY, R [1 ]
MAULDIN, RD [1 ]
机构
[1] UNIV N TEXAS,DEPT MATH,DENTON,TX 76203
关键词
D O I
10.1016/0001-8708(92)90064-R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a rigorous construction and generalization of the multifractal decomposition for Moran fractals with infinite product measure. The generalization is specified by a system of nonnegative weights in the partition sum. All the usual (smooth) properties of the f(α) theory are recovered for the case that the weights are equal to unity. The generalized spectrum, f(α, w), is invariant to a group of gauge transformations of the weights, and, in addition, need no longer be concave. In case the fractal is a Cantor set generated by an iterated function system of similarities, α is the pointwise dimension of the measure. We discuss properties of some examples. © 1992.
引用
收藏
页码:196 / 236
页数:41
相关论文
共 32 条
[1]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[2]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[4]  
Billingsley P, 1961, ILLINOIS J MATH, V5, P291
[5]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[6]   THE DIMENSION SPECTRUM OF SOME DYNAMIC-SYSTEMS [J].
COLLET, P ;
LEBOWITZ, JL ;
PORZIO, A .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) :609-644
[7]  
EDGAR GA, IN PRESS P LONDON MA
[8]  
Eggleston H., 1949, Q J MATH OXFORD, V20, P31, DOI 10.1093/qmath/os-20.1.31
[9]  
FALCONER K. J., 1985, CAMBRIDGE TRACTS MAT, V85
[10]  
Frisch U., 1985, TURBULENCE PREDICTAB, P84