MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS

被引:233
作者
CAWLEY, R [1 ]
MAULDIN, RD [1 ]
机构
[1] UNIV N TEXAS,DEPT MATH,DENTON,TX 76203
关键词
D O I
10.1016/0001-8708(92)90064-R
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a rigorous construction and generalization of the multifractal decomposition for Moran fractals with infinite product measure. The generalization is specified by a system of nonnegative weights in the partition sum. All the usual (smooth) properties of the f(α) theory are recovered for the case that the weights are equal to unity. The generalized spectrum, f(α, w), is invariant to a group of gauge transformations of the weights, and, in addition, need no longer be concave. In case the fractal is a Cantor set generated by an iterated function system of similarities, α is the pointwise dimension of the measure. We discuss properties of some examples. © 1992.
引用
收藏
页码:196 / 236
页数:41
相关论文
共 32 条
[21]   REPLICA SYMMETRY-BREAKING AND THE NATURE OF THE SPIN-GLASS PHASE [J].
MEZARD, M ;
PARISI, G ;
SOURLAS, N ;
TOULOUSE, G ;
VIRASORO, M .
JOURNAL DE PHYSIQUE, 1984, 45 (05) :843-854
[22]   NATURE OF THE SPIN-GLASS PHASE [J].
MEZARD, M ;
PARISI, G ;
SOURLAS, N ;
TOULOUSE, G ;
VIRASORO, M .
PHYSICAL REVIEW LETTERS, 1984, 52 (13) :1156-1159
[23]  
MEZARD M, 1987, WORLD SCI LECTURE NO, V9
[24]   ADDITIVE FUNCTIONS OF INTERVALS AND HAUSDORFF MEASURE [J].
MORAN, PAP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1946, 42 (01) :15-23
[25]   STATISTICAL-MECHANICS OF A NEUROBIOLOGICAL DYNAMIC SYSTEM - THE SPECTRUM OF LOCAL ENTROPIES (S(ALPHA)) APPLIED TO COCAINE-PERTURBED BEHAVIOR [J].
PAULUS, MP ;
GEYER, MA ;
MANDELL, AJ .
PHYSICA A, 1991, 174 (2-3) :567-577
[26]  
RAND D, SINGULARITY SPECTRUM
[27]  
Renyi A., 1970, PROBABILITY THEORY
[28]   SINGULAR MEASURES AND HAUSDORFF MEASURES [J].
SMORODINSKY, M .
ISRAEL JOURNAL OF MATHEMATICS, 1969, 7 (03) :203-+
[29]   MEASURES AND SELF SIMILARITY [J].
SPEAR, DW .
ADVANCES IN MATHEMATICS, 1992, 91 (02) :143-157
[30]  
SPEAR DW, 1989, THESIS U N TEXAS