LOWER BOUNDS FOR Q-ARY COVERINGS BY SPHERES OF RADIUS ONE

被引:10
作者
HABSIEGER, L
机构
[1] Centre de Recherche en Mathématiques de Bordeaux, CNRS UA 226, Université de Bordeaux 1, 33405 Talence Cedex
关键词
D O I
10.1016/0097-3165(94)90013-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a q-ary covering code with covering radius one. We give lower and upper bounds for the number of elements of C that lie in a fixed subspace of {0,..., q - 1}n. These inequalities lead to lower bounds for the cardinality of C that improve on the sphere covering bound. More precisely, we show that, if (q - 1) n + 1 does not divide q(n) and if (q, n) is-not-an-element-of {(2, 2), (2,4)), the sphere covering bound is never reached. This enables us to characterize the cases where the sphere covering bound is attained, when q is a prime power. We also present some improvements of the already known lower bounds for binary and ternary codes. (C) 1994 Academic Press, Inc.
引用
收藏
页码:199 / 222
页数:24
相关论文
共 12 条
[1]   LOWER BOUNDS FOR Q-ARY COVERING CODES [J].
CHEN, W ;
HONKALA, IS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :664-671
[2]   FURTHER RESULTS ON THE COVERING RADIUS OF CODES [J].
COHEN, GD ;
LOBSTEIN, AC ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) :680-694
[3]   COVERING RADIUS - SURVEY AND RECENT RESULTS [J].
COHEN, GD ;
KARPOVSKY, MG ;
MATTSON, HF ;
SCHATZ, JR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1985, 31 (03) :328-343
[4]   MODIFIED BOUNDS FOR COVERING CODES [J].
HONKALA, IS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :351-365
[5]  
KALBFLEISCH JG, 1969, J LONDON MATH SOC, V1, P398
[6]  
KALBFLEISCH JG, 1969, J LOND MATH SOC, V44, P60
[7]  
KAMPS HJL, 1967, J COMB THEORY, V3, P315
[8]  
Losey G., 1969, J COMB THEORY A, V6, P208
[9]  
STANTON RG, 1969, J LOND MATH SOC, V2, P493
[10]  
STANTON RG, 1968, AEQUATIONES MATH, V1, P94