BEHAVIOR OF A 3-TORUS IN TRUNCATED NAVIER-STOKES EQUATIONS

被引:14
作者
GIBERTI, C
ZANASI, R
机构
[1] Dipartimento di Matematica Pura ed Applicata, Universitá de Modena, 41100 Modena
来源
PHYSICA D | 1993年 / 65卷 / 03期
关键词
D O I
10.1016/0167-2789(93)90165-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The presence of a three-torus in a seven-mode truncation of the three-dimensional Navier-Stokes equations is investigated numerically by means of cross-section and power spectra. Furthermore, by taking advantage of particular features of the model, rotation vectors, circle maps and torus maps can be computed with high accuracy and used to study the dynamics. In particular, some interesting phenomena of partial phase-locking are described in deep detail. The three-torus, which arises via a Hopf bifurcation and persists in a wide parameter range, is found to break and originate a strange attractor. The onset of chaos and the associated bifurcation point can be defined quite precisely.
引用
收藏
页码:300 / 312
页数:13
相关论文
共 14 条
[1]   3 COUPLED OSCILLATORS - MODE-LOCKING, GLOBAL BIFURCATIONS AND TOROIDAL CHAOS [J].
BAESENS, C ;
GUCKENHEIMER, J ;
KIM, S ;
MACKAY, RS .
PHYSICA D, 1991, 49 (03) :387-475
[2]   CHAOTIC ATTRACTORS ON A 3-TORUS, AND TORUS BREAK-UP [J].
BATTELINO, PM ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1989, 39 (2-3) :299-314
[3]   QUASIPERIODICITY AND CHAOS IN A SYSTEM WITH 3 COMPETING FREQUENCIES [J].
CUMMING, A ;
LINSAY, PS .
PHYSICAL REVIEW LETTERS, 1988, 60 (26) :2719-2722
[4]   ROADS TO TURBULENCE IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
ECKMANN, JP .
REVIEWS OF MODERN PHYSICS, 1981, 53 (04) :643-654
[5]   BREAKING AND DISAPPEARANCE OF TORI [J].
FRANCESCHINI, V ;
TEBALDI, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (03) :317-329
[6]  
FRANCESCHINI V, 1991, NONLINEARITY, V4, P1
[7]   MANY ROUTES TO TURBULENT CONVECTION [J].
GOLLUB, JP ;
BENSON, SV .
JOURNAL OF FLUID MECHANICS, 1980, 100 (OCT) :449-470
[8]   ATTRACTORS ON AN N-TORUS - QUASIPERIODICITY VERSUS CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1985, 15 (03) :354-373
[9]   ARE 3-FREQUENCY QUASI-PERIODIC ORBITS TO BE EXPECTED IN TYPICAL NON-LINEAR DYNAMICAL-SYSTEMS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1983, 51 (05) :339-342
[10]   3-FREQUENCY QUASI-PERIODICITY, PHASE LOCKING, AND THE ONSET OF CHAOS [J].
LINSAY, PS ;
CUMMING, AW .
PHYSICA D, 1989, 40 (02) :196-217