SPATIAL PROPERTIES OF INTEGRABLE AND NONINTEGRABLE DISCRETE NONLINEAR SCHRODINGER-EQUATIONS

被引:31
作者
HENNIG, D
SUN, NG
GABRIEL, H
TSIRONIS, GP
机构
[1] UNIV N TEXAS, DEPT PHYS, DENTON, TX 76203 USA
[2] UNIV N TEXAS, CTR NONLINEAR SCI, DENTON, TX 76203 USA
[3] UNIV CRETE, DEPT PHYS, GR-71110 IRAKLION, GREECE
[4] RES CTR CRETE, GR-71110 IRAKLION, GREECE
关键词
D O I
10.1103/PhysRevE.52.255
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the spatial properties of a nonlinear discrete Schrodinger equation introduced by Cai, Bishop, and Gronbech-Jensen [Phys. Rev. Lett. 72, 591 (1994)] that interpolates between the integrable Ablowitz-Ladik equation and the nonintegrable discrete nonlinear Schrodinger equation. We focus on the stationary properties of the interpolating equation and analyze the interplay between integrability and nonintegrability by transforming the problem into a dynamical system and investigating its Hamiltonian structure. We find explicit parameter regimes where the corresponding dynamical system has regular trajectories leading to propagating wave solutions. Using the anti-integrable limit, we show the existence of breathers. We also investigate the wave transmission problem through a finite segment of the nonlinear lattice and analyze the regimes of regular wave transmission. By analogy of the nonlinear lattice problem with chaotic scattering systems, we find the chain lengths at which reliable information transmission via amplitude modulation is possible.
引用
收藏
页码:255 / 269
页数:15
相关论文
共 60 条
[1]  
Ablowitz M. J., 1991, SOLITONS NONLINEAR E, V149
[2]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[3]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[4]  
ARNOLD VI, 1984, NONLINEAR TURBULENT, P116
[5]   THE CONCEPT OF ANTIINTEGRABILITY APPLIED TO DYNAMICAL-SYSTEMS AND TO STRUCTURAL AND ELECTRONIC MODELS IN CONDENSED MATTER PHYSICS [J].
AUBRY, S .
PHYSICA D, 1994, 71 (1-2) :196-221
[6]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[7]   THE TWIST MAP, THE EXTENDED FRENKEL-KONTOROVA MODEL AND THE DEVILS STAIRCASE [J].
AUBRY, S .
PHYSICA D, 1983, 7 (1-3) :240-258
[8]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[9]   THE ONE-HOLE TO 2-HOLE TRANSITION FOR CANTORI [J].
BAESENS, C ;
MACKAY, RS .
PHYSICA D, 1994, 71 (04) :372-389
[10]  
Bellman R., 1970, INTRO MATRIX ANAL