THE ONE-HOLE TO 2-HOLE TRANSITION FOR CANTORI

被引:18
作者
BAESENS, C
MACKAY, RS
机构
[1] Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, Conventry
来源
PHYSICA D | 1994年 / 71卷 / 04期
关键词
D O I
10.1016/0167-2789(94)90005-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The gaps in a cantorus come in orbits, which we call ''holes''. In the space of parameters (a, b) for the ''two-harmonic'' reversible area-preserving twist map family, y' = y - a/2pi sin 2pix - b/4pi sin 4pix, x' = x + y' (mod 1) , application of the idea of the anti-integrable limit establishes that there must-be one to two-hole transitions for cantori of all irrational rotation numbers. We have numerically located a curve in parameter space across which a one-hole cantorus of golden rotation number develops a second hole, and we present results on scaling behaviour of several quantities near this interesting transition.
引用
收藏
页码:372 / 389
页数:18
相关论文
共 24 条
[1]  
Arrowsmith D. K., 1990, INTRO DYNAMICAL SYST
[2]   EQUIVALENCE OF UNIFORM HYPERBOLICITY FOR SYMPLECTIC TWIST MAPS AND PHONON GAP FOR FRENKEL-KONTOROVA MODELS [J].
AUBRY, S ;
MACKAY, RS ;
BAESENS, C .
PHYSICA D, 1992, 56 (2-3) :123-134
[3]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[4]   EFFECTIVE DISCOMMENSURATIONS IN THE INCOMMENSURATE GROUND-STATES OF THE EXTENDED FRENKEL-KONTOROWA MODELS [J].
AUBRY, S ;
GOSSO, JP ;
ABRAMOVICI, G ;
RAIMBAULT, JL ;
QUEMERAIS, P .
PHYSICA D, 1991, 47 (03) :461-497
[5]   CONTINUITY OF THE PHONON GAP [J].
BAESENS, C ;
MACKAY, RS .
PHYSICS LETTERS A, 1993, 183 (2-3) :193-195
[6]   CANTORI FOR MULTIHARMONIC MAPS [J].
BAESENS, C ;
MACKAY, RS .
PHYSICA D, 1993, 69 (1-2) :59-76
[7]   ON THE STABILITY OF PERIODIC-ORBITS OF TWO-DIMENSIONAL MAPPINGS [J].
BOUNTIS, T ;
HELLEMAN, RHG .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) :1867-1877
[8]  
DEVOGELAERE R, 1958, CONTRIBUTIONS THEORY, V4, P53
[9]   A RIGOROUS PARTIAL JUSTIFICATION OF GREENE CRITERION [J].
FALCOLINI, C ;
DELALLAVE, R .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) :609-643
[10]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201