Exploiting the brain's network structure in identifying ADHD subjects

被引:37
作者
Dey, Soumyabrata [1 ]
Rao, A. Ravishankar [2 ]
Shah, Mubarak [1 ]
机构
[1] Univ Cent Florida, Dept Elect Engn & Comp Sci, Comp Vis Lab, Orlando, FL 32816 USA
[2] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
FRONTIERS IN SYSTEMS NEUROSCIENCE | 2012年 / 6卷
关键词
attention deficit hyperactive disorder; default mode network; functional magnetic resonance image; linear discriminant analysis; principal component analysis;
D O I
10.3389/fnsys.2012.00075
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects. We compute the pairwise correlation of brain voxels' activity over the time frame of the experimental protocol which helps to model the function of a brain as a network. Different network features are computed for each of the voxels constructing the network. The concatenation of the network features of all the voxels in a brain serves as the feature vector. Feature vectors from a set of subjects are then used to train a PCA-LDA (principal component analysis-linear discriminant analysis) based classifier. We hypothesized that ADHD related differences lie in some specific regions of brain and using features only from those regions are sufficient to discriminate ADHD and control subjects. We propose a method to create a brain mask which includes the useful regions only and demonstrate that using the feature from the masked regions improves classification accuracy on the test data set. We train our classifier with 776 subjects, and test on 171 subjects provided by the Neuro Bureau for the ADHD-200 challenge. We demonstrate the utility of graph-motif features, specifically the maps that represent the frequency of participation of voxels in network cycles of length 3. The best classification performance (69.59%) is achieved using 3-cycle map features with masking. Our proposed approach holds promise in being able to diagnose and understand the disorder.
引用
收藏
页数:13
相关论文
共 33 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients [J].
Assaf, Michal ;
Jagannathan, Kanchana ;
Calhoun, Vince D. ;
Miller, Laura ;
Stevens, Michael C. ;
Sahl, Robert ;
O'Boyle, Jacqueline G. ;
Schultz, Robert T. ;
Pearlson, Godfrey D. .
NEUROIMAGE, 2010, 53 (01) :247-256
[3]   Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting stroop [J].
Bush, G ;
Frazier, JA ;
Rauch, SL ;
Seidman, LJ ;
Whalen, PJ ;
Jenike, MA ;
Rosen, BR ;
Biederman, J .
BIOLOGICAL PSYCHIATRY, 1999, 45 (12) :1542-1552
[4]   Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study [J].
Cao, Qingjiu ;
Zang, Yufeng ;
Sun, Li ;
Sui, Manqiu ;
Long, Xiangyu ;
Zou, Qihong ;
Wang, Yufeng .
NEUROREPORT, 2006, 17 (10) :1033-1036
[5]   Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder [J].
Castellanos, F. Xavier ;
Margulies, Daniel S. ;
Kelly, Clare ;
Uddin, Lucina Q. ;
Ghaffari, Manely ;
Kirsch, Andrew ;
Shaw, David ;
Shehzad, Zarrar ;
Di Martino, Adriana ;
Biswal, Bharat ;
Sonuga-Barke, Edmund J. S. ;
Rotrosen, John ;
Adler, Lenard A. ;
Milham, Michael P. .
BIOLOGICAL PSYCHIATRY, 2008, 63 (03) :332-337
[6]  
Castellanos FX, 1996, ARCH GEN PSYCHIAT, V53, P607
[7]   Functional connectivity in a baseline resting-state network in autism [J].
Cherkassky, Vladimir L. ;
Kana, Rajesh K. ;
Keller, Timothy A. ;
Just, Marcel Adam .
NEUROREPORT, 2006, 17 (16) :1687-1690
[8]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[9]   Consistent resting-state networks across healthy subjects [J].
Damoiseaux, J. S. ;
Rombouts, S. A. R. B. ;
Barkhof, F. ;
Scheltens, P. ;
Stam, C. J. ;
Smith, S. M. ;
Beckmann, C. F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (37) :13848-13853
[10]   Differential patterns of striatal activation in young children with and without ADHD [J].
Durston, S ;
Tottenham, NT ;
Thomas, KM ;
Davidson, MC ;
Eigsti, IM ;
Yang, YH ;
Ulug, AM ;
Casey, BJ .
BIOLOGICAL PSYCHIATRY, 2003, 53 (10) :871-878