V-SNARES AND T-SNARES IN NEURONAL EXOCYTOSIS - A NEED FOR ADDITIONAL COMPONENTS TO DEFINE SITES OF RELEASE

被引:57
作者
GALLI, T
GARCIA, EP
MUNDIGL, O
CHILCOTE, TJ
DECAMILLI, P
机构
[1] YALE UNIV,SCH MED,BOYER CTR MOLEC MED,DEPT CELL BIOL,NEW HAVEN,CT 06510
[2] YALE UNIV,SCH MED,BOYER CTR MOLEC MED,HOWARD HUGHES MED INST,NEW HAVEN,CT 06510
关键词
EXOCYTOSIS; V-SNARES; T-SNARES;
D O I
10.1016/0028-3908(95)00113-K
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Synaptic vesicle recycling is a specialized form of membrane recycling which takes place in all cells between early endosomes and the plasmalemma. Synaptic vesicles exocytosis is highly regulated and occurs only at presynaptic active zones. In contrast, exocytosis of endosome-derived vesicles of the housekeeping recycling pathway takes place constitutively and throughout the cell surface. Since v- and t-SNAREs play a key role in membrane interactions leading to fusion, unique v- and t-SNAREs may be implicated in synaptic vesicle exocytosis. It was found, however, that the same V-SNAREs of the synaptobrevin family are found both on synaptic vesicles and on endosome-derived vesicles which undergo constitutive fusion. Likewise, t-SNAREs which act as plasmalemmal receptors for synaptic vesicles are not restricted to synaptic active zones. Thus, v- and t-SNAREs interactions may define which organelles can fuse with the plasmalemma, but require additional components to define properties of the exocytotic reaction which are specific for distinct classes of secretory organelles.
引用
收藏
页码:1351 / 1360
页数:10
相关论文
共 63 条
  • [1] YEAST SYNTAXINS SSO1P AND SSO2P BELONG TO A FAMILY OF RELATED MEMBRANE-PROTEINS THAT FUNCTION IN VESICULAR TRANSPORT
    AALTO, MK
    RONNE, H
    KERANEN, S
    [J]. EMBO JOURNAL, 1993, 12 (11) : 4095 - 4104
  • [2] COMPARISON OF THE INTRACELLULAR EFFECTS OF CLOSTRIDIAL NEUROTOXINS ON EXOCYTOSIS FROM STREPTOLYSIN O-PERMEABILIZED RAT PHEOCHROMOCYTOMA (PC-12) AND BOVINE ADRENAL CHROMAFFIN CELLS
    AHNERTHILGER, G
    WELLER, U
    [J]. NEUROSCIENCE, 1993, 53 (02) : 547 - 552
  • [3] SYNAPTOBREVIN - AN INTEGRAL MEMBRANE-PROTEIN OF 18000 DALTONS PRESENT IN SMALL SYNAPTIC VESICLES OF RAT-BRAIN
    BAUMERT, M
    MAYCOX, PR
    NAVONE, F
    DECAMILLI, P
    JAHN, R
    [J]. EMBO JOURNAL, 1989, 8 (02) : 379 - 384
  • [4] THE SYNTAXIN FAMILY OF VESICULAR TRANSPORT RECEPTORS
    BENNETT, MK
    GARCIAARRARAS, JE
    ELFERINK, LA
    PETERSON, K
    FLEMING, AM
    HAZUKA, CD
    SCHELLER, RH
    [J]. CELL, 1993, 74 (05) : 863 - 873
  • [5] THE MOLECULAR MACHINERY FOR SECRETION IS CONSERVED FROM YEAST TO NEURONS
    BENNETT, MK
    SCHELLER, RH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) : 2559 - 2563
  • [6] SEC9 IS A SNAP-25-LIKE COMPONENT OF A YEAST SNARE COMPLEX THAT MAY BE THE EFFECTOR OF SEC4 FUNCTION IN EXOCYTOSIS
    BRENNWALD, P
    KEARNS, B
    CHAMPION, K
    KERANEN, S
    BANKAITIS, V
    NOVICK, P
    [J]. CELL, 1994, 79 (02) : 245 - 258
  • [7] CA2+ AND SECRETORY-VESICLE DYNAMICS
    BURGOYNE, RD
    MORGAN, A
    [J]. TRENDS IN NEUROSCIENCES, 1995, 18 (04) : 191 - 196
  • [8] CAIN CC, 1992, J BIOL CHEM, V267, P11681
  • [9] PROTEIN-PROTEIN INTERACTIONS CONTRIBUTING TO THE SPECIFICITY OF INTRACELLULAR VESICULAR TRAFFICKING
    CALAKOS, N
    BENNETT, MK
    PETERSON, KE
    SCHELLER, RH
    [J]. SCIENCE, 1994, 263 (5150) : 1146 - 1149
  • [10] COLOCALIZATION OF SYNAPTOPHYSIN WITH TRANSFERRIN RECEPTORS - IMPLICATIONS FOR SYNAPTIC VESICLE BIOGENESIS
    CAMERON, PL
    SUDHOF, TC
    JAHN, R
    DECAMILLI, P
    [J]. JOURNAL OF CELL BIOLOGY, 1991, 115 (01) : 151 - 164