COMPARISON OF CANONICAL VARIATIONAL TRANSITION-STATE THEORY RATE CONSTANTS FOR H ATOM ASSOCIATION WITH ALKYL RADICALS AND WITH THE (111) SURFACE OF DIAMOND

被引:14
作者
BARBARAT, P [1 ]
ACCARY, C [1 ]
HASE, WL [1 ]
机构
[1] WAYNE STATE UNIV,DEPT CHEM,DETROIT,MI 48202
关键词
D O I
10.1021/j100147a026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A model potential energy function developed previously for H + CH3 --> CH4 association is extended, with transfer of parameters, to H atom association with other alkyl radicals and with the diamond (111) surface. Reaction path following calculations are performed to determine canonical variational transition state theory (CVTST) rate constants for these association reactions. The CVTST rate constants for H atom association with C2H5, i-C3H7, and t-C4H9 agree with experimental and/or estimated mte constants to within a factor of 2. This finding indicates it is not a severe approximation to assume transferability of potential energy parameters for different H atom and alkyl radical association reactions. Differences between the CVTST rate constants for these associations are discussed in terms of moment of inertia ratios between the transition state and reactants and frequencies for the transitional bending modes. The CVTST rate constant for H atom association with the diamond (111) surface is approximately 2 times smaller than that for H + t-C4H9 association, which results from a factor of 2 difference in reaction path degeneracies for these two associations and agrees with a kinetic model proposed previously [J. Phys. Chem. 1993,97,23]. The H + diamond (111) surface association rate constant is weakly sensitive to both the nonbonded potential between the associating H atom and H atoms attached to the surface and the lattice potential. The lattice partition function changes less than 10% in forming the association transition state. In contrast to these CVTST results, a recent trajectory study shows that the H atom + diamond (111) surface association rate constant is sensitive to the lattice potential. This is because the transfer of the H atom relative translational energy to lattice vibration, which is necessary for association to occur, is sensitive to the lattice potential. Thus, CVTST may overestimate the H + diamond (111) surface association rate constant, since it does not treat this energy-transfer process.
引用
收藏
页码:11706 / 11711
页数:6
相关论文
共 52 条
[1]  
ACCARY C, IN PRESS
[2]  
ACCARY C, IN PRESS J PHYS CHEM
[3]   MOLECULAR MECHANICS - THE MM3 FORCE-FIELD FOR HYDROCARBONS .1. [J].
ALLINGER, NL ;
YUH, YH ;
LII, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (23) :8551-8566
[4]  
ANGUS JC, 1991, ANNU REV MATER SCI, V21, P221
[5]   LOW-PRESSURE, METASTABLE GROWTH OF DIAMOND AND DIAMONDLIKE PHASES [J].
ANGUS, JC ;
HAYMAN, CC .
SCIENCE, 1988, 241 (4868) :913-921
[6]   FLEXIBLE TRANSITION-STATE THEORY RATE CONSTANTS FOR THE RECOMBINATION REACTION CH3 + H-]CH4 [J].
AUBANEL, EE ;
WARDLAW, DM .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (08) :3117-3124
[7]   A MECHANISM FOR GROWTH ON DIAMOND (110) FROM ACETYLENE [J].
BELTON, DN ;
HARRIS, SJ .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :2371-2377
[8]  
BRENNER DW, 1992, AM CERAM SOC BULL, V71, P1821
[9]  
BRENNER DW, 1992, MATER RES SOC SYMP P, V278, P255, DOI 10.1557/PROC-278-255
[10]   EXPERIMENTAL AND RRKM MODELING STUDY OF THE CH3+H AND CH3+D REACTIONS [J].
BROUARD, M ;
MACPHERSON, MT ;
PILLING, MJ .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (10) :4047-4059