The effect of heat-stable E. coli enterotoxin on intestinal fluid secretion is commonly considered to be mediated by stimulation of mucosal cyclic guanosine monophosphate (cGMP). It was demonstrated recently that 5-hydroxytryptamine (5-HT) acts as an important mediator in cholera toxin-induced fluid secretion. To elucidate the possible involvement of 5-HT in the secretory response to heat-stable E. coli enterotoxin, in vivo experiments were performed in the rat jejunum. The inhibitory effects of the 5-HT2 receptor antagonist ketanserin. the 5-HT3 receptor antagonist tropisetron and indomethacin were studied in heat-stable E. coli enterotoxin-induced fluid secretion. Tropisetron and ketanserin (100-mu-g/kg each) alone only partially reduced the secretory effect of the toxin. However, in combination, the two blockers (100 plus 100-mu-g/kg) significantly reduced and at 200 plus 200-mu-g/kg totally abolished heat-stable E. coli enterotoxin-induced secretion without influencing the enterotoxin-induced increase in cGMP. Pretreatment with indomethacin (10 mg/kg) reduced the secretory response to the enterotoxin by about 50%. These results support the concept that 5-HT is an important mediator in intestinal fluid secretion induced by heat-stable E. coli enterotoxin. The enterotoxin may use 5-HT to stimulate prostaglandin formation via 5-HT2 receptors and to activate neuronal structures via 5-HT3 receptors.