LEAST-CHANGE SPARSE SECANT UPDATE METHODS WITH INACCURATE SECANT CONDITIONS

被引:7
作者
DENNIS, JE [1 ]
WALKER, HF [1 ]
机构
[1] UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77004
关键词
D O I
10.1137/0722046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors investigate the role of the secant or quasi-Newton condition in the sparse Broyden or Schubert update method for solving systems of nonlinear equations whose Jacobians are either sparse, or can be approximated acceptably by conveniently sparse matrices. They develop a theory on perturbations to the secant equation that will still allow a proof of local q-linear convergence. To illustrate the theory, they show how to generalize the standard secant condition to the case when the function difference is contaminated by noise.
引用
收藏
页码:760 / 778
页数:19
相关论文
共 14 条
[1]  
BARRERA P, 1979, 10TH INT S MATH PROG
[2]   CONVERGENCE OF AN ALGORITHM FOR SOLVING SPARSE NONLINEAR SYSTEMS [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1971, 25 (114) :285-&
[3]  
BROYDEN CG, 1965, MATH COMPUT, V19, P577, DOI DOI 10.1090/S0025-5718-1965-0198670-6
[4]   LEAST CHANGE SECANT UPDATES FOR QUASI-NEWTON METHODS [J].
DENNIS, JE ;
SCHNABEL, RB .
SIAM REVIEW, 1979, 21 (04) :443-459
[5]   CONVERGENCE THEOREMS FOR LEAST-CHANGE SECANT UPDATE METHODS [J].
DENNIS, JE ;
WALKER, HF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) :949-987
[6]  
DENNIS JE, 1984, MATH PROGRAM STUD, V22, P70
[7]  
DENNIS JE, 1974, MATH COMPUT, V28, P549, DOI 10.1090/S0025-5718-1974-0343581-1
[8]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[9]   CONVERGENCE RESULTS FOR SCHUBERTS METHOD FOR SOLVING SPARSE NON-LINEAR EQUATIONS [J].
MARWIL, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (04) :588-604
[10]  
MORE JJ, 1980, ANL8074 REP