ON THE TOPOLOGY OF STATIONARY BLACK-HOLES

被引:93
作者
CHRUSCIEL, PT
WALD, RM
机构
[1] MAX PLANCK INST ASTROPHYS,D-85740 GARCHING,GERMANY
[2] UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637
[3] UNIV CHICAGO,ENRICO FERMI INST,CHICAGO,IL 60637
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/11/12/001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove that the domain of outer communication of a stationary, globally hyperbolic spacetime satisfying the null energy condition must be simply connected. Under suitable additional hypotheses, this implies, in particular, that each connected component of a cross section of the event horizon of a stationary black hole must have spherical topology.
引用
收藏
页码:L147 / L152
页数:6
相关论文
共 19 条
[1]  
BEIG R, 1994, UNPUB KILLING VECTOR
[2]  
Carter B., 1979, General relativity. An Einstein centenary survey, P294
[3]   ON COMPLETENESS OF ORBITS OF KILLING VECTOR-FIELDS [J].
CHRUSCIEL, PT .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (10) :2091-2101
[4]   MAXIMAL HYPERSURFACES IN STATIONARY ASYMPTOTICALLY FLAT SPACETIMES [J].
CHRUSCIEL, PT ;
WALD, RM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (03) :561-604
[5]  
Ellis G. F. R., 1973, LARGE SCALE STRUCTUR
[6]   TOPOLOGICAL CENSORSHIP [J].
FRIEDMAN, JL ;
SCHLEICH, K ;
WITT, DM .
PHYSICAL REVIEW LETTERS, 1993, 71 (10) :1486-1489
[7]  
GALLOWAY G, 1982, MATH Z, V181, P396
[8]  
GALLOWAY G, 1994, DIFFERENTIAL GEOMETR
[9]   ON THE TOPOLOGY OF BLACK-HOLES [J].
GALLOWAY, GJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (01) :53-66
[10]   TOPOLOGY OF SPACE-LIKE HYPERSURFACES, SINGULARITIES, AND BLACK-HOLES [J].
GANNON, D .
GENERAL RELATIVITY AND GRAVITATION, 1976, 7 (02) :219-232