PRECONDITIONED CONJUGATE GRADIENTS FOR SOLVING SINGULAR SYSTEMS

被引:144
作者
KAASSCHIETER, EF [1 ]
机构
[1] TNO,DGV INST APPL GEOSCI,2600 AG DELFT,NETHERLANDS
关键词
D O I
10.1016/0377-0427(88)90358-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:265 / 275
页数:11
相关论文
共 7 条
[1]  
Axelsson O, 1984, COMPUTER SCI APPL MA
[2]   A PRACTICAL FINITE-ELEMENT APPROXIMATION OF A SEMIDEFINITE NEUMANN PROBLEM ON A CURVED DOMAIN [J].
BARRETT, JW ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1987, 51 (01) :23-36
[3]  
Ciarlet P., 1978, FINITE ELEMENT METHO
[4]  
Golub G. H., 2013, MATRIX COMPUTATIONS, V3
[5]   ITERATIVE SOLUTION METHOD FOR LINEAR-SYSTEMS OF WHICH COEFFICIENT MATRIX IS A SYMMETRIC M-MATRIX [J].
MEIJERINK, JA ;
VANDERVORST, HA .
MATHEMATICS OF COMPUTATION, 1977, 31 (137) :148-162
[6]   GUIDELINES FOR THE USAGE OF INCOMPLETE DECOMPOSITIONS IN SOLVING SETS OF LINEAR-EQUATIONS AS THEY OCCUR IN PRACTICAL PROBLEMS [J].
MEIJERINK, JA ;
VANDERVORST, HA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (01) :134-155
[7]   THE RATE OF CONVERGENCE OF CONJUGATE GRADIENTS [J].
VANDERSLUIS, A ;
VANDERVORST, HA .
NUMERISCHE MATHEMATIK, 1986, 48 (05) :543-560