FIXED-POINT PERTURBATION-THEORY AND THE POTENTIAL R2+LAMBDA-R2/(1+GR2) .1. ANALYSIS OF CONVERGENCE

被引:11
作者
ZNOJIL, M
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1984年 / 17卷 / 18期
关键词
D O I
10.1088/0305-4470/17/18/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:3441 / 3448
页数:8
相关论文
共 14 条
[1]   PERTURBED HARMONIC-OSCILLATOR LADDER OPERATORS - EIGENENERGIES AND EIGENFUNCTIONS FOR THE X2+LAMBDA-X2 (1+GX2) INTERACTION [J].
BESSIS, N ;
BESSIS, G ;
HADINGER, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03) :497-512
[2]  
CHOUDHURY RN, 1983, J PHYS A, V16, P4031
[3]   EXACT SOLUTIONS FOR A DOUBLY ANHARMONIC-OSCILLATOR [J].
FLESSAS, GP .
PHYSICS LETTERS A, 1979, 72 (4-5) :289-290
[4]   EIGENVALUE METHOD [J].
GINSBURG, CA .
PHYSICAL REVIEW LETTERS, 1982, 48 (13) :839-841
[5]  
Itzykson C., 1980, QUANTUM FIELD THEORY
[6]  
Korn G., 1968, MATH HDB
[7]   ON THE SCHRODINGER-EQUATION FOR THE INTERACTION X-2+LAMBDA-X-2/(1+GX-2) [J].
LAI, CS ;
LIN, HE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (05) :1495-1502
[8]  
WALL HS, 1948, ANAL THEORY CONTINUE
[9]  
WHITEHEAD RR, 1982, J PHYS A-MATH GEN, V15, P1217, DOI 10.1088/0305-4470/15/4/024
[10]  
Wilkinson J.H., 1965, ALGEBRAIC EIGENVALUE, V87