INDEPENDENCE AND THE HAVEL-HAKIMI RESIDUE

被引:24
作者
GRIGGS, JR
KLEITMAN, DJ
机构
[1] UNIV S CAROLINA,DEPT MATH,COLUMBIA,SC 29208
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
基金
美国国家科学基金会;
关键词
D O I
10.1016/0012-365X(92)00479-B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Favaron et al. (1991) have obtained a proof of a conjecture of Fajtlowicz' computer program Graffiti that for every graph G the number of zeroes left after fully reducing the degree sequence as in the Havel-Hakimi Theorem is at most the independence number of G. In this paper we present a simplified version of the proof of Graffiti's conjecture, and we find how the residue relates to a natural greedy algorithm for constructing large independent sets in G.
引用
收藏
页码:209 / 212
页数:4
相关论文
共 8 条
[1]  
FAJTLOWICZ S, CONJECTURES GRAFFITI
[2]   ON THE RESIDUE OF A GRAPH [J].
FAVARON, O ;
MAHEO, M ;
SACLE, JF .
JOURNAL OF GRAPH THEORY, 1991, 15 (01) :39-64
[3]   LOWER BOUNDS ON THE INDEPENDENCE NUMBER IN TERMS OF THE DEGREES [J].
GRIGGS, JR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) :22-39
[4]  
GRIGGS JR, UNPUB ALGORITHMS IND
[5]   ON REALIZABILITY OF A SET OF INTEGERS AS DEGREES OF THE VERTICES OF A LINEAR GRAPH .1. [J].
HAKIMI, SL .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (03) :496-506
[6]  
Havel V., 1955, ASOPIS P ST MAT, V80, P477, DOI [10.21136/CPM.1955.108220, DOI 10.21136/CPM.1955.108220]
[7]   APPROXIMATION ALGORITHMS FOR COMBINATORIAL PROBLEMS [J].
JOHNSON, DS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1974, 9 (03) :256-278
[8]  
WEI VK, 1981, 81112179 BELL LABS T