PENALTY FINITE-ELEMENT METHOD FOR THE NAVIER STOKES EQUATIONS

被引:33
作者
CAREY, GF
KRISHNAN, R
机构
关键词
D O I
10.1016/0045-7825(84)90025-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:183 / 224
页数:42
相关论文
共 20 条
[1]   FINITE-ELEMENT FOR THE NUMERICAL-SOLUTION OF VISCOUS INCOMPRESSIBLE FLOWS [J].
BERCOVIER, M ;
ENGELMAN, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (02) :181-201
[2]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[3]   ANALYTICAL AND NUMERICAL STUDIES OF STRUCTURE OF STEADY SEPARATED FLOWS [J].
BURGGRAF, OR .
JOURNAL OF FLUID MECHANICS, 1966, 24 :113-&
[4]   PENALTY APPROXIMATION OF STOKES-FLOW [J].
CAREY, GF ;
KRISHNAN, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 35 (02) :169-206
[5]  
CAREY GF, 1984, UNPUB COMPUT METHS A
[6]  
GARTLING DK, 1974, THESIS U TEXAS AUSTI
[7]  
GIRAULT V, 1979, LECTURE NOTES MATH, V749
[8]  
Grisvard P., 1972, B UNIONE MAT ITAL, V5, P132
[9]   FINITE-ELEMENT ANALYSIS OF INCOMPRESSIBLE VISCOUS FLOWS BY THE PENALTY FUNCTION FORMULATION [J].
HUGHES, TJR ;
LIU, WK ;
BROOKS, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (01) :1-60
[10]  
JAMET P, 1974, LECTURE NOTES COMPUT, V10, P193