WAVES IN A RAPIDLY VARYING RANDOM POTENTIAL - A NUMERICAL STUDY

被引:29
作者
BOUCHAUD, JP
TOUATI, D
SORNETTE, D
机构
[1] ECOLE NORM SUPER, PHYS STAT LAB, 24 RUE LHOMOND, F-75231 PARIS 05, FRANCE
[2] UNIV NICE, PHYS MAT CONDENSEE LAB, F-06034 NICE, FRANCE
关键词
D O I
10.1103/PhysRevLett.68.1787
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the time evolution of a wave packet in a rapidly varying (in time) random potential. We find that the wave function becomes "multifractal," i.e., that an infinite number of exponents is needed to describe its evolution. The width of the packet is found to increase as square-root t, i.e., diffusively. The evolution of the center of mass is compatible with a subdiffusive t1/4 law.
引用
收藏
页码:1787 / 1790
页数:4
相关论文
共 18 条
[11]  
MEDINA E, 1991, PHYS REV LETT, V66, P2177
[12]  
MEZARD M, 1990, J PHYS-PARIS, V51, P1713
[13]  
Nakhmedov E. P., 1987, Soviet Physics - JETP, V65, P1202
[14]  
OVCHINNIKOV AA, 1975, ZH EKSP TEOR FIZ, V40, P733
[15]   ANOMALOUS SCALING LAWS IN MULTIFRACTAL OBJECTS [J].
PALADIN, G ;
VULPIANI, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 156 (04) :147-225
[16]   ON THE REPLICA APPROACH TO RANDOM DIRECTED POLYMERS IN 2 DIMENSIONS [J].
PARISI, G .
JOURNAL DE PHYSIQUE, 1990, 51 (15) :1595-1606
[17]  
RAMAKRISHNAN TV, 1987, CHANCE MATTER
[18]  
SHENG P, 1990, SCATTERING LOCALISAT