CHAOTIC BILLIARDS GENERATED BY ARITHMETIC GROUPS

被引:78
作者
BOGOMOLNY, EB
GEORGEOT, B
GIANNONI, MJ
SCHMIT, C
机构
[1] Division de Physique Théorique, Institut de Physique Nucléaire
关键词
D O I
10.1103/PhysRevLett.69.1477
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is known that statistical properties of the energy levels for various billiards on a constant-negative-curvature surface do not follow the universal random-matrix predictions. We show that nongeneric behavior of the systems investigated so far originates from the special arithmetic nature of their tiling groups, which produces an exponentially large degeneracy of lengths of periodic orbits. A semiclassical study of the two-point correlation function shows that the spectral fluctuations are close to Poisson-like ones, typical of integrable systems.
引用
收藏
页码:1477 / 1480
页数:4
相关论文
共 28 条
[11]  
Bohigas O., 1990, Comments on Atomic and Molecular Physics, V25, P31
[12]  
BOHIGAS O, 1991, CHAOS QUANTUM PHYSIC
[13]  
Hadamard J., 1898, J MATH PURES APPL, V4, P27
[14]  
HEJHAL D, 1976, LECT NOTES MATH, V548, P302
[15]   CHARACTERS OF FREE GROUPS REPRESENTED IN 2-DIMENSIONAL SPECIAL LINEAR GROUP [J].
HOROWITZ, RD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1972, 25 (06) :635-649
[16]   ZUR ANALYTISCHEN THEORIE HYPERBOLISCHER RAUMFORMEN UND BEWEGUNGSGRUPPEN [J].
HUBER, H .
MATHEMATISCHE ANNALEN, 1959, 138 (01) :1-26
[17]  
MAGNUS W, 1974, NONEUCLIDEON TESSELA
[18]  
Mehta M. L., 2004, RANDOM MATRICES STAT
[19]  
Miyake, 1989, MODULAR FORMS