SINGLE-CRYSTAL RESONANCE RAMAN-SPECTROSCOPY OF SITE-DIRECTED MUTANTS OF CYTOCHROME-C PEROXIDASE

被引:42
作者
SMULEVICH, G
WANG, Y
MAURO, JM
WANG, JM
FISHEL, LA
KRAUT, J
SPIRO, TG
机构
[1] PRINCETON UNIV,DEPT CHEM,PRINCETON,NJ 08544
[2] UNIV CALIF SAN DIEGO,DEPT CHEM,LA JOLLA,CA 92093
关键词
D O I
10.1021/bi00483a004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Resonance Raman spectra are reported for single crystals of cytochrome c peroxidase (CCP) mutants, taken by using a microscope equipped with a variable-temperature stage. The spectra are similar to those observed for the mutant proteins in solution, but there are detectable differences having to do with the coordination and spin state of the heme. The Asn-235 mutant contains a mixture of six-coordinate high- and low-spin states with a detectably higher fraction of the former than in solution. Upon cooling even to 223 K, the heme is converted mostly to the low-spin form. The Phe-191 mutant likewise shows a high/low-spin six-coordinate mixture, together with a preponderant population of five-coordinate heme. Upon cooling, the high-spin six-coordinate population converts immediately to the low-spin form, while the five-coordinate population does so more slowly. This behavior is intermediate between that of native CCP and the Asn-235 mutant, consistent with an ancillary role for the normal Trp-191-Asp-235 H-bond in the proximal anchoring of the heme Fe. The Phe-51 mutant shows a dominant high-spin five-coordinate heme population in the single crystal, whereas in solution the six-coordinate form is dominant. This difference is mimicked by adding 2-methyl-2,4-pentanediol (MPD) to the solution and is attributed to the dehydrating effect of MPD, which is present during crystallization. Upon lowering the temperature, the five-coordinate heme converts partially to a six-coordinate high-spin form. This mutant, as well as an aged form of native CCP, is unique in having a stable high-spin six-coordinate heme at low temperature. The spectra show selective orientation and polarization effects on the Raman band intensities, which can be understood quantitatively on the basis of the heme orientation relative to the crystal axes (oriented gas model). These effects help to discriminate among bands arising from vibrational modes of different symmetry, and they give information about the localization of the heme electronic transition moments in the protein. © 1990, American Chemical Society. All rights reserved.
引用
收藏
页码:7174 / 7180
页数:7
相关论文
共 30 条
[21]   CYTOCHROME-C PEROXIDASE MUTANT ACTIVE-SITE STRUCTURES PROBED BY RESONANCE RAMAN AND INFRARED SIGNATURES OF THE CO ADDUCTS [J].
SMULEVICH, G ;
MAURO, JM ;
FISHEL, LA ;
ENGLISH, AM ;
KRAUT, J ;
SPIRO, TG .
BIOCHEMISTRY, 1988, 27 (15) :5486-5492
[22]   RAMAN AND INFRARED-SPECTRA OF CYTOCHROME-C PEROXIDASE CARBON-MONOXIDE ADDUCTS IN ALTERNATIVE CONFORMATIONAL STATES [J].
SMULEVICH, G ;
EVANGELISTAKIRKUP, R ;
ENGLISH, A ;
SPIRO, TG .
BIOCHEMISTRY, 1986, 25 (15) :4426-4430
[23]   RESONANCE RAMAN-SPECTROSCOPY OF CYTOCHROME-C PEROXIDASE SINGLE-CRYSTALS ON A VARIABLE-TEMPERATURE MICROSCOPE STAGE [J].
SMULEVICH, G ;
WANG, Y ;
EDWARDS, SL ;
POULOS, TL ;
ENGLISH, AM ;
SPIRO, TG .
BIOCHEMISTRY, 1990, 29 (10) :2586-2592
[24]   TRANSIENT RESONANCE RAMAN-SPECTROSCOPY SHOWS UNRELAXED HEME FOLLOWING CO PHOTODISSOCIATION FROM CYTOCHROME-C PEROXIDASE [J].
SMULEVICH, G ;
DASGUPTA, S ;
ENGLISH, A ;
SPIRO, TG .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 873 (01) :88-91
[25]  
Spiro T.G., 1988, BIOL APPL RAMAN SPEC, P1
[26]   RESONANCE EFFECTS IN VIBRATIONAL SCATTERING FROM COMPLEX-MOLECULES [J].
SPIRO, TG ;
STEIN, P .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1977, 28 :501-521
[27]  
STEKAS TC, 1974, BIOCHIM BIOPHYS ACTA, V351, P237
[28]  
SUZUKI M, 1968, SPECTROCHIM ACTA A, V26, P1091
[29]   X-RAY STRUCTURES OF RECOMBINANT YEAST CYTOCHROME-C PEROXIDASE AND 3 HEME-CLEFT MUTANTS PREPARED BY SITE-DIRECTED MUTAGENESIS [J].
WANG, JM ;
MAURO, JM ;
EDWARDS, SL ;
OATLEY, SJ ;
FISHEL, LA ;
ASHFORD, VA ;
XUONG, NH ;
KRAUT, J .
BIOCHEMISTRY, 1990, 29 (31) :7160-7173
[30]  
YONETANI T, 1987, J BIOL CHEM, V262, P9547