INTERPOLATORY CONVEXITY-PRESERVING SUBDIVISION SCHEMES FOR CURVES AND SURFACES

被引:42
作者
DYN, N [1 ]
LEVIN, D [1 ]
LIU, D [1 ]
机构
[1] FUDAN UNIV,INST MATH,CTR APPL MATH,220 HANDAN RD,SHANGHAI,PEOPLES R CHINA
关键词
INTERPOLATION; CONVEXITY; SUBDIVISION; CURVES; SURFACES;
D O I
10.1016/0010-4485(92)90057-H
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Interpolatory convexity-preserving subdivision schemes for curves and surfaces are introduced, and a convergence analysis is presented. The schemes are defined by geometric constructions, and they are nonlinear in the control points. It is shown, by geometry-based proofs, that the limit curves and surfaces are C1.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 11 条
[1]  
CAVARETTA AS, MEMOIRS AMS, V453, P1
[2]  
DAHLBERG BEJ, 1987, MATH SURFACES, P418
[3]  
de Boor C., 1987, Computer-Aided Geometric Design, V4, P125, DOI 10.1016/0167-8396(87)90029-X
[4]   INTERPOLATION THROUGH AN ITERATIVE SCHEME [J].
DUBUC, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (01) :185-204
[5]   ANALYSIS OF UNIFORM BINARY SUBDIVISION SCHEMES FOR CURVE DESIGN [J].
DYN, N ;
GREGORY, JA ;
LEVIN, D .
CONSTRUCTIVE APPROXIMATION, 1991, 7 (02) :127-147
[6]  
Dyn N., 1987, Computer-Aided Geometric Design, V4, P257, DOI 10.1016/0167-8396(87)90001-X
[7]  
FONTANELLA F, 1987, TOPICS MULTIVARIATE, P63
[8]  
GREGORY JA, 1988, NONUNIFORM CORNER CU
[9]   UNIFORM REFINEMENT OF CURVES [J].
MICCHELLI, CA ;
PRAUTZSCH, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :841-870
[10]  
SABIN M, 1987, MATH SURFACES, P413