Z3-GRADED ALGEBRAS AND THE CUBIC ROOT OF THE SUPERSYMMETRY TRANSLATIONS

被引:96
作者
KERNER, R
机构
[1] Laboratoire de Physique Théorique, Université P. et M. Curie, Institut Henri Poincaré, 75005 Paris
关键词
D O I
10.1063/1.529922
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization of supersymmetry is proposed based on Z3-graded algebras. Introducing the objects whose ternary commutation relations contain the cubic roots of unity, e2-pi(i)/3, e4-pi(i)/3 and 1, the operators whose trilinear combinations yield the supersymmetric translation generators can be constructed. Cubic matrices forming a ternary algebra are the generalization of Pauli's matrices. The general properties of Z3-grading, some other representations of such algebras, and their possible pertinence with regard to the quark model are briefly discussed.
引用
收藏
页码:403 / 411
页数:9
相关论文
共 12 条
[11]  
WESS J, 1974, NUCL PHYS B, V70, P139
[12]  
West P., 1986, INTRO SUPERSYMMETRY