SCALING INVARIANCE OF CRACK SURFACES

被引:219
作者
SCHMITTBUHL, J
SCHMITT, F
SCHOLZ, C
机构
[1] COLUMBIA UNIV, LAMONT DOHERTY EARTH OBSERV, PALISADES, NY 10964 USA
[2] UNIV PARIS 06, METEOROL DYNAM LAB, F-75252 PARIS 05, FRANCE
关键词
D O I
10.1029/94JB02885
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The morphology of fractured rock surfaces is studied in terms of their scaling invariance. Fresh brittle fractures of granite and gneiss were sampled with a mechanical laboratory profilometer, and (1+1)-dimensional parallel profiles were added to build actual maps of the surfaces. A first step in the scaling invariance. description is a self-affine analysis using three: independent methods. The root-mean-square and the maximum-minimum difference of the height are shown to follow a power law with the sample length, The return probability anti the Fourier spectrum are also computed. All these approaches converge to a unique self-affine exponent: zeta = 0.80. Analysis over a,broad statistical set provides a reproducibility error of +/-0.05. No significant differences between the isotropic granite and the. markedly anisotropic gneiss appear for the scaling exponents. An analysis of the profilometer shows that the two main drawbacks of the setup are not significant in these analyses. The systematic errors of the scaling analysis are estimated for the, different methods. Isotropy of the scaling invariance within the mean fracture plane is shown either with the result obtained front different fracture orientations or with the two-dimensional Fourier spectrum of the surface topography itself. The analysis is brought further into the multifractal framework. The structure functions are shown to have power law behavior, and their scaling exponent varies nonlinearly with the moment order. Finally, the corresponding conserved process belongs to a universal multifractal class with alpha = 1.5 for the Levy index and C-1 = 0.3 for the fractal codimension of the mean singularities. The three indices (zeta, alpha and C-1) completely characterize the scale invariance. The multifractal behavior is significant for physical properties which depend on high-order moments like contact. According to this study and that of other groups, the self-affine exponent zeta is constant over a large range of scales and for different fracture modes and various materials. This opens the possibility that there exists a form of universality in the cracking process. It appears that only the prefactor of the roughness is dependent on material and mode.
引用
收藏
页码:5953 / 5973
页数:21
相关论文
共 65 条
[51]  
SCHMITTBUHL, 1995, IN PRESS PHYS REV E
[52]   PERCOLATION THROUGH SELF-AFFINE SURFACES [J].
SCHMITTBUHL, J ;
VILOTTE, JP ;
ROUX, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22) :6115-6133
[53]   FIELD-MEASUREMENTS OF THE ROUGHNESS OF FAULT SURFACES [J].
SCHMITTBUHL, J ;
GENTIER, S ;
ROUX, S .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (08) :639-641
[54]  
SCHMITTBUHL J, 1994, J PHYS II, V4, P225, DOI 10.1051/jp2:1994125
[55]  
SCHMITTBUHL J, 1991, RAPPORT SCI GRECO GE, P267
[56]  
SCHOLZ C, 1990, MECHANICS EARTHQUAKE
[57]   UNIVERSAL MULTIFRACTAL INDEXES FOR THE OCEAN SURFACE AT FAR-RED WAVELENGTHS [J].
TESSIER, Y ;
LOVEJOY, S ;
SCHERTZER, D ;
LAVALLEE, D ;
KERMAN, B .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (12) :1167-1170
[58]   NUMERICAL-SIMULATION OF SOLUTE TRANSPORT IN ROUGH FRACTURES [J].
THOMPSON, ME .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1991, 96 (B3) :4157-4166
[59]   THE EFFECT OF ANISOTROPIC SURFACE-ROUGHNESS ON FLOW AND TRANSPORT IN FRACTURES [J].
THOMPSON, ME ;
BROWN, SR .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1991, 96 (B13) :21923-21932