Advances in Electronic Phenotyping: From Rule-Based Definitions to Machine Learning Models

被引:124
作者
Banda, Juan M. [1 ]
Seneviratne, Martin [1 ]
Hernandez-Boussard, Tina [1 ]
Shah, Nigam H. [1 ]
机构
[1] Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
来源
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1 | 2018年 / 1卷
关键词
electronic phenotyping; cohort building; electronic health records;
D O I
10.1146/annurev-biodatasci-080917-013315
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the widespread adoption of electronic health records (EHRs), large repositories of structured and unstructured patient data are becoming available to conduct observational studies. Finding patients with specific conditions or outcomes, known as phenotyping, is one of the most fundamental research problems encountered when using these new EHR data. Phenotyping forms the basis of translational research, comparative effectiveness studies, clinical decision support, and population health analyses using routinely collected EHR data. We review the evolution of electronic phenotyping, from the early rule-based methods to the cutting edge of supervised and unsupervised machine learning models. We aim to cover the most influential papers in commensurate detail, with a focus on both methodology and implementation. Finally, future research directions are explored.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 93 条
[1]   Mining peripheral arterial disease cases from narrative clinical notes using natural language processing [J].
Afzal, Naveed ;
Sohn, Sunghwan ;
Abram, Sara ;
Scott, Christopher G. ;
Chaudhry, Rajeev ;
Liu, Hongfang ;
Kullo, Iftikhar J. ;
Arruda-Olson, Adelaide M. .
JOURNAL OF VASCULAR SURGERY, 2017, 65 (06) :1753-1761
[2]  
Agarwal V, P WORKSH DAT MIN MED
[3]   Learning statistical models of phenotypes using noisy labeled training data [J].
Agarwal, Vibhu ;
Podchiyska, Tanya ;
Banda, Juan M. ;
Goel, Veena ;
Leung, Tiffany I. ;
Minty, Evan P. ;
Sweeney, Timothy E. ;
Gyang, Elsie ;
Shah, Nigam H. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (06) :1166-1173
[4]  
AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1007/BF00153759
[5]   Towards comprehensive syntactic and semantic annotations of the clinical narrative [J].
Albright, Daniel ;
Lanfranchi, Arrick ;
Fredriksen, Anwen ;
Styler, William F. ;
Warner, Colin ;
Hwang, Jena D. ;
Choi, Jinho D. ;
Dligach, Dmitriy ;
Nielsen, Rodney D. ;
Martin, James ;
Ward, Wayne ;
Palmer, Martha ;
Savova, Guergana K. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (05) :922-930
[6]   Fusing Randomized Trials With Big Data The Key to Self-learning Health Care Systems? [J].
Angus, Derek C. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 314 (08) :767-768
[7]   On the sample complexity of noise-tolerant learning [J].
Aslam, JA ;
Decatur, SE .
INFORMATION PROCESSING LETTERS, 1996, 57 (04) :189-195
[8]  
Banda Juan M, 2017, AMIA Jt Summits Transl Sci Proc, V2017, P48
[9]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[10]   Defining a comprehensive verotype using electronic health records for personalized medicine [J].
Boland, Mary Regina ;
Hripcsak, George ;
Shen, Yufeng ;
Chung, Wendy K. ;
Weng, Chunhua .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (E2) :E232-E238