Advances in Electronic Phenotyping: From Rule-Based Definitions to Machine Learning Models

被引:124
作者
Banda, Juan M. [1 ]
Seneviratne, Martin [1 ]
Hernandez-Boussard, Tina [1 ]
Shah, Nigam H. [1 ]
机构
[1] Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
来源
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1 | 2018年 / 1卷
关键词
electronic phenotyping; cohort building; electronic health records;
D O I
10.1146/annurev-biodatasci-080917-013315
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the widespread adoption of electronic health records (EHRs), large repositories of structured and unstructured patient data are becoming available to conduct observational studies. Finding patients with specific conditions or outcomes, known as phenotyping, is one of the most fundamental research problems encountered when using these new EHR data. Phenotyping forms the basis of translational research, comparative effectiveness studies, clinical decision support, and population health analyses using routinely collected EHR data. We review the evolution of electronic phenotyping, from the early rule-based methods to the cutting edge of supervised and unsupervised machine learning models. We aim to cover the most influential papers in commensurate detail, with a focus on both methodology and implementation. Finally, future research directions are explored.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 93 条
[31]   Granite: Diversified, Sparse Tensor Factorization for Electronic Health Record-Based Phenotyping [J].
Henderson, Jette ;
Ho, Joyce C. ;
Kho, Abel N. ;
Denny, Joshua C. ;
Malin, Bradley A. ;
Sun, Jimeng ;
Ghosh, Joydeep .
2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2017, :214-223
[32]  
Henderson Jette, 2017, AMIA Jt Summits Transl Sci Proc, V2017, P149
[33]   SAPHIRE - AN INFORMATION-RETRIEVAL SYSTEM FEATURING CONCEPT MATCHING, AUTOMATIC-INDEXING, PROBABILISTIC RETRIEVAL, AND HIERARCHICAL RELATIONSHIPS [J].
HERSH, WR ;
GREENES, RA .
COMPUTERS AND BIOMEDICAL RESEARCH, 1990, 23 (05) :410-425
[34]  
Ho Joyce C., 2014, Brain Informatics and Health. International Conference, BIH 2014. Proceedings: LNCS 8609, P142, DOI 10.1007/978-3-319-09891-3_14
[35]   Marble: High-throughput Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor Factorization [J].
Ho, Joyce C. ;
Ghosh, Joydeep ;
Sun, Jimeng .
PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, :115-124
[36]   Limestone: High-throughput candidate phenotype generation via tensor factorization [J].
Ho, Joyce C. ;
Ghosh, Joydeep ;
Steinhubl, Steve R. ;
Stewart, Walter F. ;
Denny, Joshua C. ;
Malin, Bradley A. ;
Sun, Jimeng .
JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 52 :199-211
[37]   Accuracy of data in computer-based patient records [J].
Hogan, WR ;
Wagner, MM .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1997, 4 (05) :342-355
[38]   Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers [J].
Hripcsak, George ;
Duke, Jon D. ;
Shah, Nigam H. ;
Reich, Christian G. ;
Huser, Vojtech ;
Schuemie, Martijn J. ;
Suchard, Marc A. ;
Park, Rae Woong ;
Wong, Ian Chi Kei ;
Rijnbeek, Peter R. ;
van der Lei, Johan ;
Pratt, Nicole ;
Noren, G. Niklas ;
Li, Yu-Chuan ;
Stang, Paul E. ;
Madigan, David ;
Ryan, Patrick B. .
MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 :574-578
[39]   Next-generation phenotyping of electronic health records [J].
Hripcsak, George ;
Albers, David J. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (01) :117-121
[40]   Feature selection via supervised model construction [J].
Huang, Y ;
McCullagh, PJ ;
Black, ND .
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, :411-414