THE STRATONOVICH-WEYL CORRESPONDENCE FOR ONE-DIMENSIONAL KINEMATICAL GROUPS

被引:34
作者
GADELLA, M
MARTIN, MA
NIETO, LM
DELOLMO, MA
机构
[1] Departemento de Física Teórica, Universidad de Valladolid
关键词
D O I
10.1063/1.529315
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Stratonovich-Weyl correspondence is a restatement of the Moyal quantization where the phase space is a manifold and where a group of transformations acts on it transitively. The first and most important step is to define a mapping from the manifold into the set of self-adjoint operators on a Hilbert space, under suitable conditions. This mapping is called a Stratonovich-Weyl kernel. The construction of this mapping is discussed on coadjoint orbits of the one-dimensional Galilei, Poincare, and Newton-Hooke groups as well as the two-dimensional Euclidean group.
引用
收藏
页码:1182 / 1192
页数:11
相关论文
共 28 条
[1]  
AMIET JP, 1981, MECANIQUES CLASSIQUE
[2]   POSSIBLE KINEMATICS [J].
BACRY, H ;
LEVYLEBL.JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (10) :1605-&
[3]  
BOHM A, 1989, LECTURE NOTES PHYSIC, V348
[4]  
Boothby W. M., 1975, INTRO DIFFERENTIABLE
[5]   PROJECTIVE COVERING GROUP VERSUS REPRESENTATION-GROUPS [J].
CARINENA, JF ;
SANTANDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :440-443
[6]   PROJECTIVE UNITARY REPRESENTATIONS OF CONNECTED LIE GROUPS [J].
CARINENA, JF ;
SANTANDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (07) :1416-1420
[7]   RELATIVISTIC QUANTUM KINEMATICS IN THE MOYAL REPRESENTATION [J].
CARINENA, JF ;
GRACIABONDIA, JM ;
VARILLY, JC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (06) :901-933
[8]   LOCALLY OPERATING REALIZATIONS OF TRANSFORMATION LIE-GROUPS [J].
CARINENA, JF ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) :2096-2106
[9]  
CARINENA JF, 1989, ICTP IC8961 PREPR
[10]   MACKEY-MOORE COHOMOLOGY AND TOPOLOGICAL EXTENSIONS OF POLISH GROUPS [J].
CATTANEO, U ;
JANNER, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (08) :1155-1165